BU CS 332 – Theory of Computation

https://forms.gle/46bdU9t84D1FuEYx5

Lecture 15:

- Undecidability
- Reductions

Reading:

Sipser Ch 4.2, 5.1

Mark Bun November 1, 2022

Where we are and where we're going

Church-Turing thesis: TMs capture all algorithms

Consequence: studying the limits of TMs reveals the limits of computation

Last time: Countability, uncountability, and diagonalization Existential proof that there are undecidable and unrecognizable languages

All languages over 20,13 is uncontable. All TMs is contable

Today: An explicit undecidable language

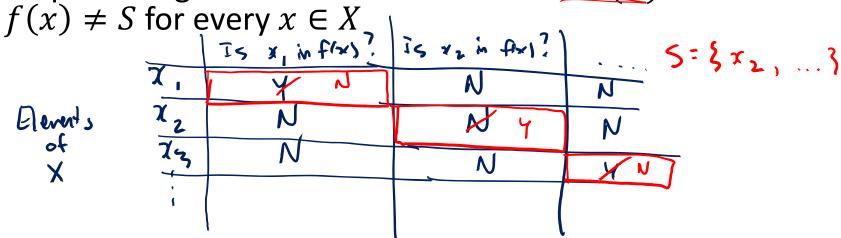
Reductions: Relate decidability / undecidability of different problems

An Explicit Undecidable Language

Last time:

Theorem: Let X be any set. Then the power set P(X) does **not** have the same size as X.

- 1) Assume, for the sake of contradiction, that there is a bijection $f: X \to P(X)$
- 2) "Flip the diagonal" to construct a set $S \in P(X)$ such that



3) Conclude that f is not onto, contradicting assumption that f is a bijection

Specializing the proof

Theorem: Let X be the set of all TM deciders. Then there exists an undecidable language in $P(\{0,1\}^*)$

- 1) Assume, for the sake of contradiction, that $L: X \to P(\{0,1\}^*)$ is onto $L(M) = L_{ayuage}$ decided by TM M
- 2) "Flip the diagonal" to construct a language $UD \in P(\{0,1\}^*)$ such that $L(M) \neq UD$ for every $M \in X$

3) Conclude that L is not onto, a contradiction

An explicit undecidable language

TM M			
M_1			
M_2			
M_3			
M_4			
i			

Why is it possible to enumerate all TMs like this?

- a) The set of all TMs is finite
- b) The set of all TMs is countably infinite
- c) The set of all TMs is uncountable

An explicit undecidable language he and y for accept of

TM M	$M(\langle M_1 \rangle)$	$M(\langle M_2 \rangle)$?	$M(\langle M_3 \rangle)$?	$M(\langle M_4 \rangle)$?		$D(\langle D \rangle)$?
M_1	NYL	N	Υ	Υ		
M_2	N	Y X	Υ	Υ		
M_3	Υ	Υ	N X	N		_
M_4	N	N	Υ	N		
:					٠.	
D						X N

 $D = \{\langle M \rangle \mid M \text{ is a TM that does not accept on input } \langle M \rangle \}$

Claim: UD is undecidable < < 1, 7, < 1, - 5

Assume Ftsol D decides WO

(are 1: 0 (< 15)) accepts => (0) & U0 by construction of U0 (antradicts assumption that 0 behaves convertly on <0>
(are 2: 0 (< 15)) does not accept => <0> & UD by construction

11/1/2022

CS332 - Theory of Computation
again contradicts (Devectors of 0 on <0> K

An explicit undecidable language

Theorem: $UD = \{\langle M \rangle \mid M \text{ is a TM that does not accept on } \}$ input $\langle M \rangle$ is undecidable Proof: Suppose for contradiction, that TM D decides UD Examine what happens when we run O(<0>). (antrodicts assurption that 0 decides UD >. (are 7: D(ZD)) rejects \Rightarrow $< D7 \in U0$ by def. of vD>> 0 rejects <0> when it is improved to accept Contradicts 0 horry a decider for un. ×

A more useful undecidable language

 $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$

Theorem: A_{TM} is undecidable

Proof: Assume for the sake of contradiction that TM H decides $A_{\rm TM}$:

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

Idea: Show that H can be used to construct a decider for the (undecidable) language UD -- a contradiction.

A more useful undecidable language

 $A_{\text{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts input } w\}$ Proof (continued):

Suppose, for contradiction, that H decides A_{TM} Consider the following TM D:

"On input $\langle M \rangle$ where M is a TM:

- 1. Run H on input $\langle M, \langle M \rangle \rangle$
- 2. If *H* accepts, reject. If *H* rejects, accept."

```
Claim: D decides UD = \{\langle M \rangle \mid TM M \text{ does not accept } \langle M \rangle \}

\langle M \rangle \in VD \Rightarrow M \text{ does not accept } \langle M \rangle \Rightarrow \langle M, \langle M \rangle \neq A_{TM}
\Rightarrow H(\langle M, \langle M \rangle \rangle) \text{ resolutes} \Rightarrow D \text{ accepts} \Rightarrow CM, \langle M \rangle \in A_{TM}
\Rightarrow H(\langle M, \langle M \rangle \rangle) \text{ accepts} \Rightarrow D \text{ resolutes}
...but this language is undecidable \Rightarrow D \text{ docides} \cup D
```

Unrecognizable Languages

Theorem: A language L is decidable if and only if L and \overline{L} are both Turing-recognizable. The man has a continuate \overline{A}_{TM} is unrecognizable \overline{A}_{TM} is unrecognizable by \overline{A}_{TM} is unrecognizable \overline{A}_{TM} is unrecognizable.

Proof of Theorem:

Let L be decidable. Then L is recognizable.

(decidable =) I is recognizable

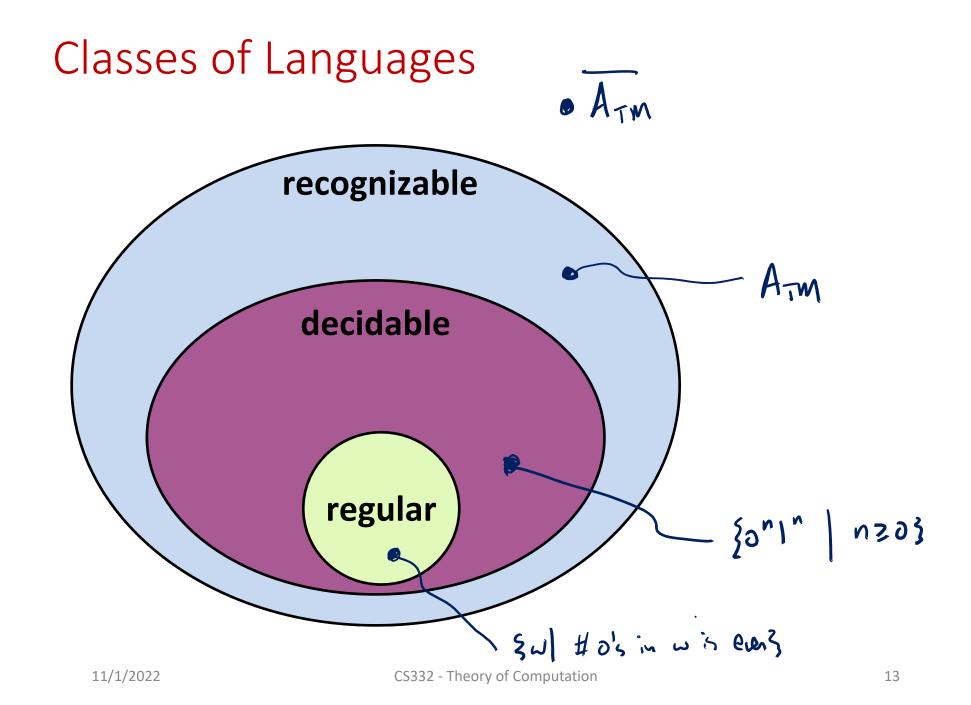
(decidable large are closed under complement)

Unrecognizable Languages

Theorem: A language L is decidable if and only if L and L are both Turing-recognizable.

Proof continued:

Let L and I both he prognizable. Let M ranginite L and M1 resignite L. Constant N deciding 1) Run M an W. It week, accept 2) Pun Mi on w. If occupts, reject. w. If allesty, aught b) Run MI For one step Problem. If well and M loops on w. If a creaty rester! On w, ten N loops on w 11/1/2022 CS332 - Theory of Computation



Reductions

Scientists vs. Engineers

A computer scientist and an engineer are stranded on a desert island. They find two palm trees with one coconut on each. The engineer climbs a tree, picks a coconut and eats.

The computer scientist climbs the second tree, picks a coconut, climbs down, climbs up the first tree and places it there, declaring success.

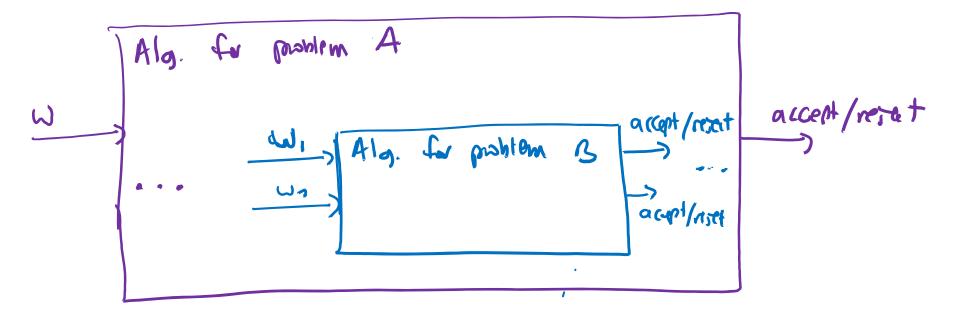
"Now we've reduced the problem to one we've already solved."

(Please laugh)

Reductions (oco. from tree 2 roco. from tree 1.

A reduction from problem A to problem B s an algorithm solving problem A which uses an algorithm solving problem B as a subroutine

If such a reduction exists, we say "A reduces to B"



Reductions

A reduction from problem A to problem B is an algorithm solving problem A which uses an algorithm solving problem B as a subroutine

If such a reduction exists, we say "A reduces to B"

If A reduces to B, and B is decidable, what can we say about A?

- a) A is decidable
- b) A is undecidable
- c) A might be either decidable or undecidable

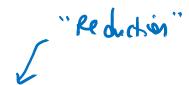
Two uses of reductions

Positive uses: If A reduces to B and B is decidable, then A is also decidable

$$E_{0FA}$$
 = ζ < σ | $L(0)$ = ϕ ς EQ_{DFA} = $\{\langle D_1, D_2 \rangle | D_1, D_2 \text{ are DFAs and } L(D_1) = L(D_2)\}$

Theorem: EQ_{DFA} is decidable

Proof: The following TM decides EQ_{DFA}



On input $\langle D_1, D_2 \rangle$, where $\langle D_1, D_2 \rangle$ are DFAs:

- 1. Construct a DFA D that recognizes the symmetric difference $L(D_1) \triangle L(D_2)$
- 2. Run the decider for E_{DFA} on $\langle D \rangle$ and return its output

Two uses of reductions

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

```
A_{\text{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts input } w\}
Suppose H decides A_{\text{TM}}
```

Consider the following TM D.

Peduction from

On input $\langle M \rangle$ where M is a TM:

- 1. Run H on input $\langle M, \langle M \rangle \rangle$
- 2. If *H* accepts, reject. If *H* rejects, accept.

```
Claim: D decides UD = \{\langle M \rangle \mid M \text{ is a TM that does not accept input } \langle M \rangle \}
```

Two uses of reductions

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

Template for undecidability proof by reduction:

- 1. Suppose to the contrary that B is decidable
- 2. Using a decider for B as a subroutine, construct an algorithm deciding A
- 3. But A is undecidable. Contradiction!