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Where we are and where we’re going

Church-Turing thesis: TMs capture all algorithms

Consequence: studying the limits of TMs reveals the limits
of computation

Last time: Countability, uncountability, and diagonalization

Existential proof that there are undecidable and
unrecognizable languages
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Today:  An explicit undecidable language

Reductions: Relate decidability / undecidability
of different problems




An Explicit Undecidable
Language
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Last time:

Theorem: Let X be any set. Then the power set P@ ) does not
have the same size as X.

1) Assume, for the sake of contradiction, that there is a
bijection f: X = P(X)

2) “Flip the diagonal” to construct a set S € P(X) such that
f(x) # Sforeveryx € X
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3) Conclude that f is not onto, contradicting assumption that
f is a bijection
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Specializing the proof

Theorem: Let X be the set of all TM deciders. Then there exists
an undecidable language in P({0,1}")

1) Assume, for the sake of contradiction, that L: X —
P({0,1})isonto L (MY~ Jagage decded hy ™M M

2) “Flip the diagonal” to construct a language UD € P({0, 1}%)
such that L(M) # UD forevery M € X

3) Conclude that L is not onto, a contradiction
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An explicit undecidable language

™ M

Why is it possible to enumerate all TMs like this? E.n E
a) The set of all TMs is finite "i" |'..-|-
@The set of all TMs is countably infinite |l 'I-'-llir
c) The set of all TMs is uncountable Ei..-
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7D = {(M) | M is a TM that does not accept on input (M)} |
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An explicit undecidable language

Theorem: UD = {{(M) | M is a TM that does not accept on
input (M)} is undecidable

Proof: Suppose for contradiction, that TM D decides UD
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A more useful undecidable language

A = {{M,w) | M is a TM that accepts input w}
Theorem: Aty is undecidable

Proof: Assume for the sake of contradiction that TM H
decides Atp:

accept if M accepts w
reject  if M does not acceptw

H((M,w)) = {

Idea: Show that H can be used to construct a decider for
the (undecidable) language UD -- a contradiction.
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A more useful undecidable language

Aty = {(M,w) | M is a TM that accepts input w}
Proof (continued):
Suppose, for contradiction, that H decides Aty

Consider the following TM D: \
“On input (M) where M is a TM:
1. Run H oninput (M, (M))
2. |If H accepts, reject. If H rejects, accept.”

Claim: D decides UD = {{M) | TM M does not accept (M)}
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/
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Unrecognizable Languages

Theorem: A language L is decidable if and only if L and L
are both Turing-recognizable. f <D | MM by ad e
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Unrecognizable Languages

Theorem: A language L is decidable if and only if L and L
are both Turing-recognizable.
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Classes of Languages _

recognizable
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Reductions
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Scientists vs. Engineers

A computer scientist and an engineer are stranded on a
desert island. They find two palm trees with one coconut
on each. The engineer cllmbs a tree, picks a coconut and
eats. 7

The computer scientist climbs the second tree, picks a
coconut, climbs down, climbs up the first tree and places
it there, declaring success.

“Now we’ve reduced the problem to one we’ve already
solved.” (Please laugh)
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Reductions Cocs. fom e  coco. Lomn +ee .

A reduction from|problem Alto [problem B |s an algorithm
solving problem A which uses an algorithm solving

problem B as a subroutine

If such a reduction exists, we say “A reduces to B”
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Reductions

A reduction from problem A to problem B is an algorithm

solving problem A which uses an algorithm solving
problem B as a subroutine

If such a reduction exists, we say “A reduces to B”

If A reduces to B, and B is decidable, what can we say
about A?

!a)}A is decidable EI"L"..I .,EI
b) A is undecidable r"1-.:||r{':'

c) A might be either decidable or undecidable O %
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Two uses of reductions

Positive uses: If A reduces to B and B is decidable, then A
is also decidable

Eoea = s <m | up: A
EQDFA — {(Dl, D2> |D1, DZ dre DFAS and L(Dl) — L(Dz)}

Theorem: EQppp is decidable

Proof: The following TM decides EQpga “ Lo dchin”

Oninput (D¢, D,), where (D, D,) are DFAs:

1. Construct a DFA D that recognizes the symmetric
difference L(D{) A L(D,)

2. Run the decider for Epga on (D) and return its output
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Two uses of reductions

Negative uses: If A reduces to B and A is undecidable,
then B is also undecidable | ,

Aty = {(M,w) | M is a TM that accepts input w}
Suppose H decides Aty

Consider the following TM D. \_// U0+ Am

On input (M) where M is a TM:
1. Run H on input (M, (M))
2. If H accepts, reject. If H rejects, accept.

Claim: D decides
UD = {{(M) | M is a TM that does not accept input (M)}
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Two uses of reductions

Negative uses: If A reduces to B and A is undecidable,
then B is also undecidable

Template for undecidability proof by reduction:
1. Suppose to the contrary that B is decidable

2. Using a decider for B as a subroutine, construct an
algorithm deciding A

3. But A is undecidable. Contradiction!
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