BU CS 332 – Theory of Computation

Lecture 15:
• Undecidability
• Reductions

Reading:
Sipser Ch 4.2, 5.1

Mark Bun
November 1, 2022
Where we are and where we’re going

Church-Turing thesis: TMs capture all algorithms
Consequence: studying the limits of TMs reveals the limits of computation

Last time: Countability, uncountability, and diagonalization
Existential proof that there are undecidable and unrecognizable languages

Today: An explicit undecidable language
Reductions: Relate decidability / undecidability of different problems
An Explicit Undecidable Language
Last time:

Theorem: Let X be any set. Then the power set $P(X)$ does not have the same size as X.

1) Assume, for the sake of contradiction, that there is a bijection $f : X \rightarrow P(X)$

2) “Flip the diagonal” to construct a set $S \in P(X)$ such that $f(x) \neq S$ for every $x \in X$

3) Conclude that f is not onto, contradicting assumption that f is a bijection
Specializing the proof

Theorem: Let X be the set of all TM deciders. Then there exists an undecidable language in $P(\{0, 1\}^*)$

1) Assume, for the sake of contradiction, that $L: X \rightarrow P(\{0, 1\}^*)$ is onto

2) “Flip the diagonal” to construct a language $UD \in P(\{0, 1\}^*)$ such that $L(M) \neq UD$ for every $M \in X$

3) Conclude that L is not onto, a contradiction
An explicit undecidable language

<table>
<thead>
<tr>
<th>TM M</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Why is it possible to enumerate all TMs like this?

a) The set of all TMs is finite
b) The set of all TMs is countably infinite
c) The set of all TMs is uncountable
An explicit undecidable language

<table>
<thead>
<tr>
<th>TM M</th>
<th>$M(\langle M_1 \rangle)$?</th>
<th>$M(\langle M_2 \rangle)$?</th>
<th>$M(\langle M_3 \rangle)$?</th>
<th>$M(\langle M_4 \rangle)$?</th>
<th>$D(\langle D \rangle)$?</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>M_2</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>M_3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>M_4</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$UD = \{ \langle M \rangle | M \text{ is a TM that does not accept on input } \langle M \rangle \} $

Claim: UD is undecidable
An explicit undecidable language

Theorem: $UD = \{\langle M \rangle \mid M$ is a TM that does not accept on input $\langle M \rangle \}$ is undecidable

Proof: Suppose for contradiction, that TM D decides UD
A more useful undecidable language

\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \} \]

Theorem: \(A_{TM} \) is undecidable

Proof: Assume for the sake of contradiction that TM \(H \) decides \(A_{TM} \):

\[H(\langle M, w \rangle) = \begin{cases}
\text{accept} & \text{if } M \text{ accepts } w \\
\text{reject} & \text{if } M \text{ does not accept } w
\end{cases} \]

Idea: Show that \(H \) can be used to construct a decider for the (undecidable) language \(UD \) -- a contradiction.
A more useful undecidable language

\[A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \} \]

Proof (continued):

Suppose, for contradiction, that \(H \) decides \(A_{\text{TM}} \)

Consider the following TM \(U \):

“On input \(\langle M \rangle \) where \(M \) is a TM:

1. Run \(H \) on input \(\langle M, \langle M \rangle \rangle \)
2. If \(H \) accepts, reject. If \(H \) rejects, accept.”

Claim: \(D \) decides \(UD = \{ \langle M \rangle \mid \text{TM } M \text{ does not accept } \langle M \rangle \} \)

...but this language is undecidable
Unrecognizable Languages

Theorem: A language L is decidable if and only if L and \overline{L} are both Turing-recognizable.

Corollary: $\overline{A_{TM}}$ is unrecognizable

Proof of Theorem:
Unrecognizable Languages

Theorem: A language L is decidable if and only if L and \overline{L} are both Turing-recognizable.

Proof continued:
Classes of Languages

- Regular
- Recognizable
- Decidable
Reductions
Scientists vs. Engineers

A computer scientist and an engineer are stranded on a desert island. They find two palm trees with one coconut on each. The engineer climbs a tree, picks a coconut and eats.

The computer scientist climbs the second tree, picks a coconut, climbs down, climbs up the first tree and places it there, declaring success.

“Now we’ve reduced the problem to one we’ve already solved.”

(Please laugh)
Reductions

A reduction from problem A to problem B is an algorithm solving problem A which uses an algorithm solving problem B as a subroutine

If such a reduction exists, we say “A reduces to B”
Reductions

A reduction from problem \(A \) to problem \(B \) is an algorithm solving problem \(A \) which uses an algorithm solving problem \(B \) as a subroutine.

If such a reduction exists, we say “\(A \) reduces to \(B \)”

If \(A \) reduces to \(B \), and \(B \) is decidable, what can we say about \(A \)?

a) \(A \) is decidable
b) \(A \) is undecidable
c) \(A \) might be either decidable or undecidable
Two uses of reductions

Positive uses: If A reduces to B and B is decidable, then A is also decidable

$\text{EQ}_{\text{DFA}} = \{\langle D_1, D_2 \rangle \mid D_1, D_2 \text{ are DFAs and } L(D_1) = L(D_2)\}$

Theorem: EQ_{DFA} is decidable

Proof: The following TM decides EQ_{DFA}

On input $\langle D_1, D_2 \rangle$, where $\langle D_1, D_2 \rangle$ are DFAs:

1. Construct a DFA D that recognizes the symmetric difference $L(D_1) \bigtriangleup L(D_2)$

2. Run the decider for E_{DFA} on $\langle D \rangle$ and return its output
Two uses of reductions

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable.

$A_{TM} = \{\langle M, w \rangle \mid M$ is a TM that accepts input $w\}$

Suppose H decides A_{TM}

Consider the following TM D.

On input $\langle M \rangle$ where M is a TM:
1. Run H on input $\langle M, \langle M \rangle \rangle$
2. If H accepts, reject. If H rejects, accept.

Claim: D decides $UD = \{\langle M \rangle \mid M$ is a TM that does not accept input $\langle M \rangle\}$
Two uses of reductions

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable.

Template for undecidability proof by reduction:
1. Suppose to the contrary that B is decidable.
2. Using a decider for B as a subroutine, construct an algorithm deciding A.
3. But A is undecidable. Contradiction!
Halting Problem

Computational problem: Given a program (TM) and input \(w \), does that program halt (either accept or reject) on input \(w \)?

Formulation as a language:

\[
HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \}
\]

Ex. \(M \) = “On input \(x \) (a natural number written in binary):

For each \(y = 1, 2, 3, \ldots \) :

If \(y^2 = x \), accept. Else, continue.”

Is \(\langle M, 101 \rangle \in HALT_{TM} \)?

a) Yes, because \(M \) accepts on input 101
b) Yes, because \(M \) rejects on input 101
c) No, because \(M \) rejects on input 101
d) No, because \(M \) loops on input 101
Halting Problem

Computational problem: Given a program (TM) and input w, does that program halt (either accept or reject) on input w?

Formulation as a language:

$$HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \}$$

Ex. $M = \text{“On input } x \text{ (a natural number in binary):}$

For each $y = 1, 2, 3, \ldots$:

If $y^2 = x$, accept. Else, continue.”

$M^\prime = \text{“On input } x \text{ (a natural number in binary):}$

For each $y = 1, 2, 3, \ldots, x$:

If $y^2 = x$, accept. Else, continue.

Reject.”
Halting Problem

\[\text{HALT}_{\text{TM}} = \{ \langle M, w \rangle | M \text{ is a TM that halts on input } w \} \]

Theorem: \(\text{HALT}_{\text{TM}} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(H \) for \(\text{HALT}_{\text{TM}} \). We construct a decider for \(V \) for \(A_{\text{TM}} \) as follows:

On input \(\langle M, w \rangle \):

1. Run \(H \) on input \(\langle M, w \rangle \)
2. If \(H \) rejects, reject
3. If \(H \) accepts, run \(M \) on \(w \)
4. If \(M \) accepts, accept
 Otherwise, reject.

This is a reduction from \(A_{\text{TM}} \) to \(\text{HALT}_{\text{TM}} \).
Halting Problem

Computational problem: Given a program (TM) and input w, does that program halt on input w?

• A central problem in formal verification

• Dealing with undecidability in practice:
 - Use heuristics that are correct on most real instances, but may be wrong or loop forever on others
 - Restrict to a “non-Turing-complete” subclass of programs for which halting is decidable
 - Use a programming language that lets a programmer specify hints (e.g., loop invariants) that can be compiled into a formal proof of halting
Emptiness testing for TMs

\[E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

Theorem: \(E_{TM} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(E_{TM} \). We construct a decider for \(A_{TM} \) as follows:

On input \(\langle M, w \rangle \):

1. Run \(R \) on input ???

This is a reduction from \(A_{TM} \) to \(E_{TM} \)
Emptiness testing for TMs

\[E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \]

Theorem: \(E_{\text{TM}} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(E_{\text{TM}} \). We construct a decider for \(A_{\text{TM}} \) as follows:

On input \(\langle M, w \rangle \):
1. Construct a TM \(N \) as follows:

2. Run \(R \) on input \(\langle N \rangle \)
3. If \(R \) accepts, accept. Otherwise, reject

This is a reduction from \(A_{\text{TM}} \) to \(E_{\text{TM}} \)

What do we want out of machine \(N \)?
 a) \(L(N) \) is empty iff \(M \) accepts \(w \)
 b) \(L(N) \) is non-empty iff \(M \) accepts \(w \)
 c) \(L(M) \) is empty iff \(N \) accepts \(w \)
 d) \(L(M) \) is non-empty iff \(N \) accepts \(w \)
Emptiness testing for TMs

\[E_{\text{Tm}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \]

Theorem: \(E_{\text{Tm}} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(E_{\text{Tm}} \). We construct a decider for \(A_{\text{Tm}} \) as follows:

On input \(\langle M, w \rangle \):

1. Construct a TM \(N \) as follows:

 “On input \(x \):

 Run \(M \) on \(w \) and output the result.”

2. Run \(R \) on input \(\langle N \rangle \)

3. If \(R \) rejects, accept. Otherwise, reject

This is a reduction from \(A_{\text{Tm}} \) to \(E_{\text{Tm}} \)
Interlude: Formalizing Reductions (Sipser 6.3)

Informally: A reduces to B if a decider for B can be used to construct a decider for A

One way to formalize:

• An *oracle* for language B is a device that can answer questions “Is $w \in B$?”

• An *oracle TM* M^B is a TM that can query an oracle for B in one computational step

A is *Turing-reducible* to B (written $A \leq_T B$) if there is an oracle TM M^B deciding A