Lecture 16:
• More on Reductions

Reading:
Sipser Ch 5.1

Mark Bun
November 3, 2022
Reductions
Reductions

A **reduction** from problem \(A \) to problem \(B \) is an algorithm for problem \(A \) which uses an algorithm for problem \(B \) as a subroutine.

If such a reduction exists, we say “\(A \) reduces to \(B \)”

Positive uses: If \(A \) reduces to \(B \) and \(B \) is decidable, then \(A \) is also decidable.

Ex. \(E_{DFA} \) is decidable \(\Rightarrow \) \(EQ_{DFA} \) is decidable

Negative uses: If \(A \) reduces to \(B \) and \(A \) is undecidable, then \(B \) is also undecidable.

Ex. \(UD \) is undecidable \(\Rightarrow \) \(A_{TM} \) is undecidable
Two uses of reductions

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

Template for undecidability proof by reduction:
1. Suppose to the contrary that B is decidable
2. Using a decider for B as a subroutine, construct an algorithm deciding A
3. But A is undecidable. Contradiction!
Halting Problem

Computational problem: Given a program (TM) and input \(w \), does that program halt (either accept or reject) on input \(w \)?

Formulation as a language:
\[
HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM that halts on input } w \}
\]

Ex. \(M = \) “On input \(x \) (a natural number written in binary):

\[
\text{For each } y = 1, 2, 3, \ldots : \\
\quad \text{If } y^2 = x, \text{ accept. Else, continue.}
\]

Is \(\langle M, 101 \rangle \in HALT_{TM} \)?

a) Yes, because \(M \) accepts on input 101
b) Yes, because \(M \) rejects on input 101
c) No, because \(M \) rejects on input 101
\boxed{d)} No, because \(M \) loops on input 101
Halting Problem

Computational problem: Given a program (TM) and input \(w \), does that program halt (either accept or reject) on input \(w \)?

Formulation as a language:

\[HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \} \]

Ex. \(M = \) “On input \(x \) (a natural number in binary):

For each \(y = 1, 2, 3, \ldots \):

If \(y^2 = x \), accept. Else, continue."

\(M' = \) “On input \(x \) (a natural number in binary):

For each \(y = 1, 2, 3, \ldots, x \):

If \(y^2 = x \), accept. Else, continue.

Reject.”
Halting Problem

\[\text{HALT}_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \} \]

Theorem: \(\text{HALT}_{TM} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(H \) for \(\text{HALT}_{TM} \). We construct a decider for \(V \) for \(A_{TM} \) as follows:

On input \(\langle M, w \rangle \):
1. Run \(H \) on input \(\langle M, w \rangle \)
2. If \(H \) rejects, reject
3. If \(H \) accepts, run \(M \) on \(w \)
4. If \(M \) accepts, accept

Otherwise, reject.

This is a reduction from \(A_{TM} \) to \(\text{HALT}_{TM} \).
Halting Problem

Computational problem: Given a program (TM) and input \(w \), does that program halt on input \(w \)?

- A central problem in formal verification
- Dealing with undecidability in practice:
 - Use heuristics that are correct on most real instances, but may be wrong or loop forever on others
 - Restrict to a “non-Turing-complete” subclass of programs for which halting is decidable
 - Use a programming language that lets a programmer specify hints (e.g., loop invariants) that can be compiled into a formal proof of halting
Emptiness testing for TMs

\[E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

Theorem: \(E_{TM} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(E_{TM} \). We construct a decider for \(A_{TM} \) as follows:

On input \(\langle M, w \rangle \):

1. Run \(R \) on input \(\langle M, w \rangle \)

\[M_2 = \text{On input } x : \]
 - \(\text{If } x = w : \text{ run } M \text{ on } w \) \text{ and reject.} \]
 - \(\text{Else : reject.} \)

This is a reduction from \(A_{TM} \) to \(E_{TM} \)
Emptiness testing for TMs

\[E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \]

Theorem: \(E_{\text{TM}} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(E_{\text{TM}} \). We construct a decider for \(A_{\text{TM}} \) as follows:

On input \(\langle M, w \rangle \):

1. Construct a TM \(N \) as follows:

 \[
 \begin{align*}
 &\text{If } \langle M, w \rangle \in A_{\text{TM}} \Rightarrow L(N) \neq \emptyset \Rightarrow R \text{ rejects } \langle N \rangle \\
 &\text{If } \langle M, w \rangle \notin A_{\text{TM}} \Rightarrow L(N) = \emptyset \Rightarrow R \text{ accepts } \langle N \rangle
 \end{align*}
 \]

 \(\Rightarrow \text{decider accepts} \)

2. Run \(R \) on input \(\langle N \rangle \)

3. If \(R \text{ rejects} \), accept. Otherwise, reject

What do we want out of machine \(N \)?

- **a)** \(L(N) \) is empty iff \(M \) accepts \(w \)
- **b)** \(L(N) \) is non-empty iff \(M \) accepts \(w \)
- **c)** \(L(M) \) is empty iff \(N \) accepts \(w \)
- **d)** \(L(M) \) is non-empty iff \(N \) accepts \(w \)

This is a reduction from \(A_{\text{TM}} \) to \(E_{\text{TM}} \)
Emptiness testing for TMs

\[E_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \]

Theorem: \(E_{TM} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(E_{TM} \). We construct a decider for \(A_{TM} \) as follows:

On input \(\langle M, w \rangle \):

1. Construct a TM \(N \) as follows:
 - "On input \(x \): Ignore \(x \)
 - Run \(M \) on \(w \) and output the result."
2. Run \(R \) on input \(\langle N \rangle \)
3. If \(R \) rejects, accept. Otherwise, reject

This is a reduction from \(A_{TM} \) to \(E_{TM} \)
Interlude: Formalizing Reductions (Sipser 6.3)

Informally: A reduces to B if a decider for B can be used to construct a decider for A

One way to formalize:

• An *oracle* for language B is a device that can answer questions “Is $w \in B$?”,

• An *oracle TM* M^B is a TM that can query an oracle for B in one computational step.

A is *Turing-reducible* to B (written $A \leq_T B$) if there is an oracle TM M^B deciding A.
Equality Testing for TMs

\[EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Theorem: \(EQ_{TM} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(EQ_{TM} \). We construct a decider for \(E_{TM} \) as follows:

On input \(\langle M \rangle \):

1. Construct TMs \(N_1, N_2 \) as follows:

 \[N_1 = \quad \quad \quad N_2 = \]

2. Run \(R \) on input \(\langle N_1, N_2 \rangle \)

3. If \(R \) accepts, accept. Otherwise, reject.

This is a reduction from \(E_{TM} \) to \(EQ_{TM} \)
Equality Testing for TMs

What do we want out of the machines N_1, N_2?

- a) $L(M) = \emptyset$ iff $N_1 = N_2$
- b) $L(M) = \emptyset$ iff $L(N_1) = L(N_2)$
- c) $L(M) = \emptyset$ iff $N_1 \neq N_2$
- d) $L(M) = \emptyset$ iff $L(N_1) \neq L(N_2)$

On input $\langle M \rangle$:

1. Construct TMs N_1, N_2 as follows:
 - $N_1 = \text{"on input } x:\text{ reject"}
 - $N_2 = M$
 - $L(N_1) = \emptyset$
 - $L(N_2) = L(M)$

2. Run R on input $\langle N_1, N_2 \rangle$

3. If R accepts, accept. Otherwise, reject.

This is a reduction from E_{TM} to EQ_{TM}
Equality Testing for TMs

\[EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}\]

Theorem: \(EQ_{TM} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(EQ_{TM} \). We construct a decider for \(A_{TM} \) as follows:

On input \(\langle M \rangle \):
1. Construct TMs \(N_1, N_2 \) as follows:
 \[N_1 = \quad N_2 = \]
2. Run \(R \) on input \(\langle N_1, N_2 \rangle \)
3. If \(R \) accepts, accept. Otherwise, reject.

This is a reduction from \(E_{TM} \) to \(EQ_{TM} \)
Regular language testing for TMs

\[\text{REG}_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular} \} \]

Theorem: \(\text{REG}_{\text{TM}} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(\text{REG}_{\text{TM}} \). We construct a decider for \(A_{\text{TM}} \) as follows:

On input \(\langle M, w \rangle \):
1. Construct a TM \(N \) as follows:
 2. Run \(R \) on input \(\langle N \rangle \)
 3. If \(R \) accepts, **accept**. Otherwise, **reject**

This is a reduction from \(A_{\text{TM}} \) to \(\text{REG}_{\text{TM}} \)
Regular language testing for TMs

\[REG_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular} \} \]

Theorem: \(REG_{TM} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(REG_{TM} \). We construct a decider for \(A_{TM} \) as follows:

On input \(\langle M, w \rangle \):
1. Construct a TM \(N \) as follows:
 \[N = \text{“On input } x, \]
 \[1. \text{ If } x \in \{0^n1^n \mid n \geq 0\}, \text{ accept} \]
 \[2. \text{ Run TM } M \text{ on input } w \]
 \[3. \text{ If } M \text{ accepts, accept. Otherwise, reject.”} \]
2. Run \(R \) on input \(\langle N \rangle \)
3. If \(R \) accepts, accept. Otherwise, reject

This is a reduction from \(A_{TM} \) to \(REG_{TM} \)