BU CS 332 — Theory of Computation
[m] 3t [m]

T 5 T
https://forms.gle/PaSZkLFEFkaohxmL9 x:'}r;l'r Ty

Lecture 16: Reading:
» More on Reductions Sipser Ch 5.1
Hu + —
Nue Sw‘u\rz\a\j 1. S9 om

Mark Bun ' /§
November 3, 2022



Reductions

11/3/2022 CS332 - Theory of Computation



Mg A
Reductions “"f—a\ = [ eala— e
Areduction from problem A to problem B is an algorithm

for problem A which uses an algorithm for problem B as a
subroutine

If such a reduction exists, we say “A reduces to B”

Positive uses: If A reduces to B and B is decidable, then A
is also decidable

Ex. Eppa is decidable = EQpppa is decidable

—_—

Negative uses: If A reduces to B and A is undecidable,
then B is also undecidable

Ex. UD is undecidable = A+, is undecidable

11/3/2022 CS332 - Theory of Computation 3



Two uses of reductions

Negative uses: If A reduces to B and A is undecidable,
then B is also undecidable

Template for undecidability proof by reduction:
1. Suppose to the contrary that B is decidable

2. Using a decider for B as a subroutine, construct an
algorithm deciding A

3. But A is undecidable. Contradiction!

11/3/2022 CS332 - Theory of Computation



Halting Problem

Computational problem: Given a program (TM; and input w,
does that program halt (either accept or reject) on input w?

Formulation as a language:
HALTyy = {{M,w) |M is a TM that halts on input w}

Ex. M = “On input x (a natural number written in binary):
Foreachy = 1,2,3,...:

'~ Ify2 = x, accept. Else, continue.”
(]
)
Is(M,101) € HALTt\" | &)1 [&]
a) Yes, because M accepts on input 101 ,.r,_l"l'f'.ﬂ-,. -
b) Yes, because M rejects on input 101 ﬁi@-.,,—‘l:
c) No, because M rejects on input 101 EP:F‘L@

@ No, because M loops on input 101

11/3/2022 CS332 - Theory of Computation 5



Halting Problem
Computational problem: Given a program (TM; and input w,
does that program halt (either accept or reject) on input w?

Formulation as a language:
HALTyy = {{M,w) |M is a TM that halts on input w}

Ex. M = “On input x (a natural number in binary):
Foreachy = 1,2,3,...:
|f y2 = x, accept. Else, continue.”

M' = “On input x (a natural number in binary):
Foreachy =1,2,3,...,x
|f y2 = x, accept. Else, continue.

Reject.”

4’| 1217
& HALT na

<W‘;V\I> (g MA’IT:M
¢

11/3/2022 CS332 - Theory of Computation 6



Am‘=§<'\n‘w7 )‘\’W\ M at_q:'} N «‘\«‘.A UJS

Halting Problem

HALTry = {{M,w) |M is a TM that halts on input w}

Theorem: HALTty is undecidable

HU (¢ wm ~?) acgh £ M bhah oa w
Reds 3 M (oge on W

for HALTty. We construct a decider for V forf Aty [as follows:

Proof: Suppose for contradiction that there eﬁists a decider H_

On input (M, w): lTW‘ \Y

1. Run H oninput (M, w)
If H rejects, reject

If M accepts, accept

Otherwise, reject.

2.
3. If H accepts, run M on w|
4,

-

C\q:w;‘ I-'F' H dne“.c\os HAM‘M\,M\
/—hv Mcf&s Af.ﬂ

\3 <M,-J) é‘Asm => N alcdlll A W
=Y M 37 € HALTp = A (Cwa)aqh
Xag. goes foskp 3 wlet M acph
=S U awgh M sles Y. .
) Ld.»ﬂ?’/\'—.m
o =3 LM 37 dHALT
&y M lonps on ‘7<H(«,,o) 50t 8

=) J repe N 2
M et M Q2 (W, ,.’)‘2 e

) Use N oto cdec t6 M y\a\-‘\ ‘a).—n H(LM u>) daany = 4o 925L!:4:P

en W

T e M ek M = e 5%

S,vw\a\f M 2 W, whe h {-‘Ua;-w«k-, b((o.uu( e lewegy

M kath & This is 3 reduction from Arym to HALTry

11/3/2022 CS332 - Theory of Computation



Halting Problem

Computational problem: Given a program (TM) and input
w, does that program halt on input w?

* A central problem in formal verification

* Dealing with undecidability in practice:

- Use heuristics that are correct on most real instances,
but may be wrong or loop forever on others

- Restrict to a “non-Turing-complete” subclass of
programs for which halting is decidable

- Use a programming language that lets a programmer
specify hints (e.g., Iopp invariants) that can be
compiled into a formal proof of halting



Emptiness testing for TMs

Etpy = {{M) |MisaTMand L(M) = @}
Theorem: Etpy is undecidable

Proof: Suppose for contradiction that there exists a decider R
for ETp. We construct a decider for Aty as follows: o

On input (M, w):

1. Run R oninput ??? m,
W T/Gﬂ Wt v T
LT Il atgh, otgt
T¢ x2w . P M mw'~§;a,f§‘;;°, {.

Cloe - veyecd

This is a reduction from Aty to Ey

11/3/2022 CS332 - Theory of Computation 9



Emptiness testing for TMs

Etm =

Theorem: Ep is undecidable

Proof: Suppose for contradiction that there exists a decider R
for Et+y. We construct a decider for Aty as follows:

On input (M, w):

1. Constructa TM N as follows:
0 M € A= UNFF =2 R ek s N7

IS AM? ¢ AW NP 2wty KND

2. Run R on input (N)
3.1f R re,ecs

=D clecév «(4("3

= decde s rech

, accept. Otherwise, reject

11/3/2022

E'-':-JJ.E'

I‘_r I|'
{{M) |MisaTM and L(M) = ¢} =] 1% ﬁ

What do we want out of

machine N?

a) L(N)isemptyiff M
accepts w

@ L(N) is non-empty iff M
accepts w

c) L(M)isemptyiff N
accepts w

d) L(M) is non-empty iff N
accepts w

This is a reduction from Aty to Ey

CS332 - Theory of Computation

10



Emptiness testing for TMs

Etpy = {{M) |MisaTMand L(M) = 0@}
Theorem: Etp is undecidable

Proof: Suppose for contradiction that there exists a decider R
for ETy. We construct a decider for Aty as follows:

On input (M, w): Clam:. s ™M dedey Ay,
e ‘ |) I-c <(M,wv GAM
1. Constructa TM N as follows: el

- . w

. = LN) = —
“Oninput x: Tgust X =2 R(ZNI) veSech

[Run M on w and output the resulﬂ’ =N TN owdl  ades

1) I <M, ¢ A,
2. Run R on input (N) o f—(”\ _’75 ¢ A

3. If R rejects, accept. Otherwise, reject = L(eN?) ateh

=7 W oeabil ek

This is a reduction from Aty to Ey

11/3/2022 CS332 - Theory of Computation 11



Interlude: Formalizing Reductions
(Sipser 6.3)

Informally: A reduces to B if a decider for B can be used
to construct a decider for A

One way to formalize:

* An oracle for language B is a device that can answer
qguestions “Isw € B?”

* An oracle TM M* is a TM that can query an oracle for B
in one computational step

A is Turing-reducible to B (written A <; B) if there is an
oracle TM M* deciding A

11/3/2022 CS332 - Theory of Computation 12



Equality Testing for TMs

EQrm = {(My, M) [My, M5 are TMs and L(M,) = L(M;)}
Theorem: EQry is undecidable

Proof: Suppose for contradiction that there exists a decider R
for EQry. We construct a decider for ETy; as follows:

On input (M):
1. Construct TMs Ny, N, as follows:
N]_ - N2 =

2. Run R on input (N;, N;)
3. If R accepts, accept. Otherwise, reject.

This is a reduction from ETy to EQTym

11/3/2022 CS332 - Theory of Computation 13




=] -’-’:-E.E'

Equality Testing for TMs

|‘_r
What do we want out of the machines Ny, N,? ,-’“1_','....:“::-E
a) L(M) = @Qiff Ny = N, ) = WiffL(Nl)_;L_(I_V_Z_L
c) LIM) =0Qiff Ny # N, M) = @iff L(N;) # L(N,)

Oninput (M): & Fshwe & Ean, e wt 0o @ &> LMY =g
1. Construct TMs Ny, N, as follows:

Nl = " 00 Mpt x* \ NZ =M
yt:e(.*‘\\
LIN)= ¢ L(N,) = L(m)
2. Run R oninput (Ny, N,) # RN, N17) acgfy &5 LN = )

3. If R accepts, accept. Otherwise, reject.

This is a reduction from Ety to EQ1pm

11/3/2022 CS332 - Theory of Computation 14



Equality Testing for TMs

EQrm = {(My, M) [My, M5 are TMs and L(M,) = L(M;)}
Theorem: EQry is undecidable

Proof: Suppose for contradiction that there exists a decider R
for EQ1y. We construct a decider for Aty as follows:

On input (M):
1. Construct TMs Ny, N, as follows:
N]_ - N2 =

2. Run R on input (N, N,)
3. If R accepts, accept. Otherwise, reject.

This is a reduction from E1y to EQ1m

11/3/2022 CS332 - Theory of Computation 15




Regular [anguage testing for TMs

REGty = {{M) |[M isa TM and L(M) is regular}
Theorem: RE Gty is undecidable

Proof: Suppose for contradiction that there exists a decider R
for REGTy. We construct a decider for Aty as follows:

On input (M, w):
1. Constructa TM N as follows:

2. Run R on input (N)
3. If R accepts, accept. Otherwise, reject

This is a reduction from Aty to REGTv

11/3/2022 CS332 - Theory of Computation 16




Regular [anguage testing for TMs

REGty = {{M) |[M isa TM and L(M) is regular}
Theorem: RE Gty is undecidable

Proof: Suppose for contradiction that there exists a decider R
for REGTy. We construct a decider for Aty as follows:

On input (M, w):
1. Constructa TM N as follows:
N =“Oninput x,
1.1f x € {0™"1™ | n = 0}, accept
2. Run TM M on input w

3. If M accepts, accept. Otherwise, reject.”
2. Run R on input (N)

3. If R accepts, accept. Otherwise, reject

This is a reduction from Aty to REGTv

11/3/2022 CS332 - Theory of Computation 17




