BU CS 332 – Theory of Computation

https://forms.gle/PaSZkLFEFkaohxmL9

Lecture 16:

More on Reductions

Reading:

Sipser Ch 5.1

MW7 — Nue Saturday II: S9PM 11/5

Mark Bun

November 3, 2022

Reductions

Reductions

A reduction from problem A to problem B is an algorithm for problem A which uses an algorithm for problem B as a subroutine

If such a reduction exists, we say "A reduces to B"

Positive uses: If A reduces to B and B is decidable, then A is also decidable

Ex. E_{DFA} is decidable $\Rightarrow E_{\text{QDFA}}$ is decidable

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

Ex. UD is undecidable $\Rightarrow A_{TM}$ is undecidable

Two uses of reductions

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

Template for undecidability proof by reduction:

- 1. Suppose to the contrary that B is decidable
- 2. Using a decider for B as a subroutine, construct an algorithm deciding A
- 3. But A is undecidable. Contradiction!

Halting Problem

Computational problem: Given a program (TM) and input w, does that program halt (either accept or reject) on input w?

Formulation as a language:

 $HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that halts on input } w\}$

Ex. M = "On input x (a natural number written in binary):

For each
$$y = 1, 2, 3, ...$$
:

If
$$y^2 = x$$
, accept. Else, continue."

Is $\langle M, 101 \rangle \in HALT_{TM}$?

- a) Yes, because *M* accepts on input 101
- b) Yes, because M rejects on input 101
- c) No, because *M* rejects on input 101
- d) No, because M loops on input 101

Halting Problem

Computational problem: Given a program (TM) and input w, does that program halt (either accept or reject) on input w?

Formulation as a language:

 $HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that halts on input } w\}$

```
Ex. M = "On input x (a natural number in binary):

For each y = 1, 2, 3, ...:

If y^2 = x, accept. Else, continue."
```

```
M' = "On input x (a natural number in binary):
 For each y=1,2,3,...,x:
 If y^2=x, accept. Else, continue.
 Reject."
```

ATM= { M, w) TM M accepts on input w}

Halting Problem

 $HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that halts on input } w\}$

Theorem: $HALT_{TM}$ is undecidable

Proof: Suppose for contradiction that there exists a decider H for $HALT_{TM}$. We construct a decider for V for A_{TM} as follows:

On input $\langle M, w \rangle$:

- Run H on input $\langle M, w \rangle$
- If *H* rejects, reject
- If H accepts, run M on w
- If M accepts, accept Otherwise, reject.

Claim If M decides MALTIM, then V decides Aim

1) (M, J) E A im => M auph on w => < M, w> = HALTIM => H((M, w)) a cops Alg. goes to step 3, where M acrops w => V acrets in step 4.

 $M \rightarrow M$ This is a reduction from A_{TM} to HAL

2) LM, W) & ATM

Halting Problem

Computational problem: Given a program (TM) and input w, does that program halt on input w?

- A central problem in formal verification
- Dealing with undecidability in practice:
 - Use heuristics that are correct on most real instances, but may be wrong or loop forever on others
 - Restrict to a "non-Turing-complete" subclass of programs for which halting is decidable
 - Use a programming language that lets a programmer specify hints (e.g., loop invariants) that can be compiled into a formal proof of halting

Emptiness testing for TMs

$$E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$$

Theorem: E_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for $E_{\rm TM}$. We construct a decider for $A_{\rm TM}$ as follows:

```
On input \langle M, w \rangle:

1. Run R on input ??? M_2

M_2 = On input x

If x = \omega: from M on \omega = If accepts, occupted by the close is rejected.
```

This is a reduction from $A_{\rm TM}$ to $E_{\rm TM}$

Emptiness testing for TMs

$$E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$$

Theorem: E_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for $E_{\rm TM}$. We construct a decider for $A_{\rm TM}$ as follows:

On input $\langle M, w \rangle$:

1. Construct a TM N as follows:

If
$$(M, w) \in A_{TM} \Rightarrow U(N) \neq \emptyset \Rightarrow \mathbb{R}$$
 rejects $\langle N \rangle$
 $= \rangle \operatorname{decider} = \operatorname{decider} = \operatorname{decider} = \langle N \rangle$
If $(M, w) \notin A_{TM} \Rightarrow U(N) \Rightarrow \emptyset \Rightarrow \mathbb{R}$ accepts $\langle N \rangle$
 $\Rightarrow \operatorname{decider} = \langle N \rangle$

- 2. Run R on input $\langle N \rangle$
- 3. If R resects, accept. Otherwise, reject

What do we want out of machine *N*?

- a) L(N) is empty iff M accepts w
- b) L(N) is non-empty iff M accepts w
- c) L(M) is empty iff N accepts w
- d) L(M) is non-empty iff N accepts w

This is a reduction from $A_{\rm TM}$ to $E_{\rm TM}$

Emptiness testing for TMs

$$E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$$

Theorem: E_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for $E_{\rm TM}$. We construct a decider for $A_{\rm TM}$ as follows:

On input $\langle \underline{M}, \underline{w} \rangle$:

1. Construct a TM N as follows:

"On input \underline{x} : I gnor x

Run M on w and output the result.

- 2. Run R on input $\langle N \rangle$
- 3. If R rejects, accept. Otherwise, reject

(lains: This TM deides Am

1) If $\langle M, \omega \rangle \in A_{TM}$ =) L(N) = Z'''=) $R(\langle N \rangle)$ rejects

=) TM orall accents

2) If $\langle M, \omega \rangle \notin A_{TM}$ =) $L(N) = \emptyset$ =) $R(\langle N \rangle)$ accepts

This is a reduction from $A_{\rm TM}$ to $E_{\rm TM}$

Interlude: Formalizing Reductions (Sipser 6.3)

Informally: A reduces to B if a decider for B can be used to construct a decider for A

One way to formalize:

- An *oracle* for language B is a device that can answer questions "Is $w \in B$?"
- An oracle $TM\ M^B$ is a TM that can query an oracle for B in one computational step

A is Turing-reducible to B (written $A \leq_T B$) if there is an oracle TM M^B deciding A

Equality Testing for TMs

$$EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$$

Theorem: EQ_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for $EQ_{\rm TM}$. We construct a decider for $E_{\rm TM}$ as follows:

On input $\langle M \rangle$:

1. Construct TMs N_1 , N_2 as follows:

$$N_1 = N_2 =$$

- 2. Run R on input $\langle N_1, N_2 \rangle$
- 3. If R accepts, accept. Otherwise, reject.

This is a reduction from E_{TM} to EQ_{TM}

Equality Testing for TMs

What do we want out of the machines N_1 , N_2 ?

a) $L(M) = \emptyset$ iff $N_1 = N_2$ b) $L(M) = \emptyset$ iff $L(N_1)$

(b)
$$L(M) = \emptyset$$
 iff $L(N_1) = L(N_2)$

- c) $L(M) = \emptyset$ iff $N_1 \neq N_2$ d) $L(M) = \emptyset$ iff $L(N_1) \neq L(N_2)$

Mistance of Emm, i.e. went to occept (=> On input $\langle M \rangle$:

1. Construct TMs N_1 , N_2 as follows:

$$N_1 = \text{"on mut } x$$
"

$$N_2 = M$$

$$L(N_2) = L(M)$$

- 2. Run R on input $\langle N_1, N_2 \rangle \neq R(\langle N_1, N_2 \rangle)$ a went $\langle N_1, N_2 \rangle = L(N_2)$
- 3. If R accepts, accept. Otherwise, reject.

This is a reduction from $E_{\rm TM}$ to $EQ_{\rm TM}$

Equality Testing for TMs

 $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Theorem: EQ_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for $EQ_{\rm TM}$. We construct a decider for $A_{\rm TM}$ as follows:

On input $\langle M \rangle$:

1. Construct TMs N_1 , N_2 as follows:

$$N_1 = N_2 =$$

- 2. Run R on input $\langle N_1, N_2 \rangle$
- 3. If R accepts, accept. Otherwise, reject.

This is a reduction from $E_{\rm TM}$ to $EQ_{\rm TM}$

Regular language testing for TMs

 $REG_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular} \}$

Theorem: REG_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for $REG_{\rm TM}$. We construct a decider for $A_{\rm TM}$ as follows:

On input $\langle M, w \rangle$:

1. Construct a TM N as follows:

- 2. Run R on input $\langle N \rangle$
- 3. If R accepts, accept. Otherwise, reject

This is a reduction from A_{TM} to REG_{TM}

Regular language testing for TMs

 $REG_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular} \}$

Theorem: REG_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for $REG_{\rm TM}$. We construct a decider for $A_{\rm TM}$ as follows:

On input $\langle M, w \rangle$:

1. Construct a TM N as follows:

N = "On input x,

- 1. If $x \in \{0^n 1^n \mid n \ge 0\}$, accept
- 2. Run TM *M* on input *w*
- 3. If *M* accepts, accept. Otherwise, reject."
- 2. Run R on input $\langle N \rangle$
- 3. If R accepts, accept. Otherwise, reject

This is a reduction from $A_{\rm TM}$ to $REG_{\rm TM}$