
BU CS 332 – Theory of Computation

Lecture 16:
• More on Reductions

Reading:
Sipser Ch 5.1

Mark Bun
November 3, 2022

https://forms.gle/T38zDHBgd62avxWy7

https://forms.gle/T38zDHBgd62avxWy7

Reductions

11/3/2022 CS332 - Theory of Computation 2

Reductions
A reduction from problem 𝐴𝐴 to problem 𝐵𝐵 is an algorithm
for problem 𝐴𝐴 which uses an algorithm for problem 𝐵𝐵 as a
subroutine
If such a reduction exists, we say “𝐴𝐴 reduces to 𝐵𝐵”

11/3/2022 CS332 - Theory of Computation 3

Positive uses: If 𝐴𝐴 reduces to 𝐵𝐵 and 𝐵𝐵 is decidable, then 𝐴𝐴
is also decidable
Ex. 𝐸𝐸DFA is decidable ⇒ 𝐸𝐸𝐸𝐸DFA is decidable

Negative uses: If 𝐴𝐴 reduces to 𝐵𝐵 and 𝐴𝐴 is undecidable,
then 𝐵𝐵 is also undecidable
Ex. 𝑈𝑈𝐷𝐷 is undecidable ⇒ 𝐴𝐴TM is undecidable

Two uses of reductions
Negative uses: If 𝐴𝐴 reduces to 𝐵𝐵 and 𝐴𝐴 is undecidable,
then 𝐵𝐵 is also undecidable

Template for undecidability proof by reduction:
1. Suppose to the contrary that 𝐵𝐵 is decidable
2. Using a decider for 𝐵𝐵 as a subroutine, construct an

algorithm deciding 𝐴𝐴
3. But 𝐴𝐴 is undecidable. Contradiction!

11/3/2022 CS332 - Theory of Computation 4

Halting Problem
Computational problem: Given a program (TM) and input 𝑤𝑤,
does that program halt (either accept or reject) on input 𝑤𝑤?
Formulation as a language:

𝐻𝐻𝐴𝐴𝐻𝐻𝐻𝐻TM = 𝑀𝑀,𝑤𝑤 𝑀𝑀 is a TM that halts on input 𝑤𝑤}

Ex. 𝑀𝑀 = “On input 𝑥𝑥 (a natural number written in binary):
For each 𝑦𝑦 = 1, 2, 3, … :

If 𝑦𝑦2 = 𝑥𝑥, accept. Else, continue.”

Is 𝑀𝑀, 101 ∈ 𝐻𝐻𝐴𝐴𝐻𝐻𝐻𝐻TM?
a) Yes, because 𝑀𝑀 accepts on input 101
b) Yes, because 𝑀𝑀 rejects on input 101
c) No, because 𝑀𝑀 rejects on input 101
d) No, because 𝑀𝑀 loops on input 101

11/3/2022 CS332 - Theory of Computation 5

Halting Problem
Computational problem: Given a program (TM) and input 𝑤𝑤,
does that program halt (either accept or reject) on input 𝑤𝑤?
Formulation as a language:

𝐻𝐻𝐴𝐴𝐻𝐻𝐻𝐻TM = 𝑀𝑀,𝑤𝑤 𝑀𝑀 is a TM that halts on input 𝑤𝑤}

Ex. 𝑀𝑀 = “On input 𝑥𝑥 (a natural number in binary):
For each 𝑦𝑦 = 1, 2, 3, … :

If 𝑦𝑦2 = 𝑥𝑥, accept. Else, continue.”

𝑀𝑀′ = “On input 𝑥𝑥 (a natural number in binary):
For each 𝑦𝑦 = 1, 2, 3, … , 𝑥𝑥 :

If 𝑦𝑦2 = 𝑥𝑥, accept. Else, continue.
Reject.”

11/3/2022 CS332 - Theory of Computation 6

Halting Problem
𝐻𝐻𝐴𝐴𝐻𝐻𝐻𝐻TM = 𝑀𝑀,𝑤𝑤 𝑀𝑀 is a TM that halts on input 𝑤𝑤}

Theorem: 𝐻𝐻𝐴𝐴𝐻𝐻𝐻𝐻TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝐻𝐻
for 𝐻𝐻𝐴𝐴𝐻𝐻𝐻𝐻TM. We construct a decider for 𝑉𝑉 for 𝐴𝐴TM as follows:
On input 𝑀𝑀,𝑤𝑤 :
1. Run 𝐻𝐻 on input 𝑀𝑀,𝑤𝑤
2. If 𝐻𝐻 rejects, reject
3. If 𝐻𝐻 accepts, run 𝑀𝑀 on 𝑤𝑤
4. If 𝑀𝑀 accepts, accept

Otherwise, reject.

This is a reduction from 𝐴𝐴TM to 𝐻𝐻𝐴𝐴𝐻𝐻𝐻𝐻TM
11/3/2022 CS332 - Theory of Computation 7

Halting Problem
Computational problem: Given a program (TM) and input
𝑤𝑤, does that program halt on input 𝑤𝑤?
• A central problem in formal verification
• Dealing with undecidability in practice:

- Use heuristics that are correct on most real instances,
but may be wrong or loop forever on others

- Restrict to a “non-Turing-complete” subclass of
programs for which halting is decidable

- Use a programming language that lets a programmer
specify hints (e.g., loop invariants) that can be
compiled into a formal proof of halting

11/3/2022 CS332 - Theory of Computation 8

Emptiness testing for TMs
𝐸𝐸TM = 𝑀𝑀 𝑀𝑀 is a TM and 𝐻𝐻 𝑀𝑀 = ∅}

Theorem: 𝐸𝐸TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅𝑅
for 𝐸𝐸TM. We construct a decider for 𝐴𝐴TM as follows:
On input 𝑀𝑀,𝑤𝑤 :
1. Run 𝑅𝑅 on input ???

This is a reduction from 𝐴𝐴TM to 𝐸𝐸TM
11/3/2022 CS332 - Theory of Computation 9

Emptiness testing for TMs
𝐸𝐸TM = 𝑀𝑀 𝑀𝑀 is a TM and 𝐻𝐻 𝑀𝑀 = ∅}

Theorem: 𝐸𝐸TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅𝑅
for 𝐸𝐸TM. We construct a decider for 𝐴𝐴TM as follows:
On input 𝑀𝑀,𝑤𝑤 :
1. Construct a TM 𝑁𝑁 as follows:

2. Run 𝑅𝑅 on input 𝑁𝑁
3. If 𝑅𝑅 , accept. Otherwise, reject

This is a reduction from 𝐴𝐴TM to 𝐸𝐸TM
11/3/2022 CS332 - Theory of Computation 10

What do we want out of
machine 𝑁𝑁?
a) 𝐻𝐻(𝑁𝑁) is empty iff 𝑀𝑀

accepts 𝑤𝑤
b) 𝐻𝐻(𝑁𝑁) is non-empty iff 𝑀𝑀

accepts 𝑤𝑤
c) 𝐻𝐻(𝑀𝑀) is empty iff 𝑁𝑁

accepts 𝑤𝑤
d) 𝐻𝐻 𝑀𝑀 is non-empty iff 𝑁𝑁

accepts 𝑤𝑤

Emptiness testing for TMs
𝐸𝐸TM = 𝑀𝑀 𝑀𝑀 is a TM and 𝐻𝐻 𝑀𝑀 = ∅}

Theorem: 𝐸𝐸TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅𝑅
for 𝐸𝐸TM. We construct a decider for 𝐴𝐴TM as follows:
On input 𝑀𝑀,𝑤𝑤 :
1. Construct a TM 𝑁𝑁 as follows:

“On input 𝑥𝑥:
Run 𝑀𝑀 on 𝑤𝑤 and output the result.”

2. Run 𝑅𝑅 on input 𝑁𝑁
3. If 𝑅𝑅 rejects, accept. Otherwise, reject

This is a reduction from 𝐴𝐴TM to 𝐸𝐸TM
11/3/2022 CS332 - Theory of Computation 11

Interlude: Formalizing Reductions
(Sipser 6.3)

Informally: 𝐴𝐴 reduces to 𝐵𝐵 if a decider for 𝐵𝐵 can be used
to construct a decider for 𝐴𝐴
One way to formalize:
• An oracle for language 𝐵𝐵 is a device that can answer

questions “Is 𝑤𝑤 ∈ 𝐵𝐵?”
• An oracle TM 𝑀𝑀𝐵𝐵 is a TM that can query an oracle for 𝐵𝐵

in one computational step

𝐴𝐴 is Turing-reducible to 𝐵𝐵 (written 𝐴𝐴 ≤𝑇𝑇 𝐵𝐵) if there is an
oracle TM 𝑀𝑀𝐵𝐵 deciding 𝐴𝐴

11/3/2022 CS332 - Theory of Computation 12

Equality Testing for TMs
𝐸𝐸𝐸𝐸TM = 𝑀𝑀1,𝑀𝑀2 𝑀𝑀1,𝑀𝑀2 are TMs and 𝐻𝐻 𝑀𝑀1 = 𝐻𝐻 𝑀𝑀2 }

Theorem: 𝐸𝐸𝐸𝐸TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅𝑅
for 𝐸𝐸𝐸𝐸TM. We construct a decider for 𝐸𝐸TM as follows:
On input 𝑀𝑀 :
1. Construct TMs 𝑁𝑁1, 𝑁𝑁2 as follows:

𝑁𝑁1 = 𝑁𝑁2 =

2. Run 𝑅𝑅 on input 𝑁𝑁1,𝑁𝑁2
3. If 𝑅𝑅 accepts, accept. Otherwise, reject.

This is a reduction from 𝐸𝐸TM to 𝐸𝐸𝐸𝐸TM
11/3/2022 CS332 - Theory of Computation 13

Equality Testing for TMs
What do we want out of the machines 𝑁𝑁1,𝑁𝑁2?
a) 𝐻𝐻 𝑀𝑀 = ∅ iff 𝑁𝑁1 = 𝑁𝑁2 b) 𝐻𝐻 𝑀𝑀 = ∅ iff 𝐻𝐻 𝑁𝑁1 = 𝐻𝐻 𝑁𝑁2
c) 𝐻𝐻 𝑀𝑀 = ∅ iff 𝑁𝑁1 ≠ 𝑁𝑁2 d) 𝐻𝐻 𝑀𝑀 = ∅ iff 𝐻𝐻 𝑁𝑁1 ≠ 𝐻𝐻 𝑁𝑁2

On input 𝑀𝑀 :
1. Construct TMs 𝑁𝑁1, 𝑁𝑁2 as follows:

𝑁𝑁1 = 𝑁𝑁2 =

2. Run 𝑅𝑅 on input 𝑁𝑁1,𝑁𝑁2
3. If 𝑅𝑅 accepts, accept. Otherwise, reject.

This is a reduction from 𝐸𝐸TM to 𝐸𝐸𝐸𝐸TM
11/3/2022 CS332 - Theory of Computation 14

Equality Testing for TMs
𝐸𝐸𝐸𝐸TM = 𝑀𝑀1,𝑀𝑀2 𝑀𝑀1,𝑀𝑀2 are TMs and 𝐻𝐻 𝑀𝑀1 = 𝐻𝐻 𝑀𝑀2 }

Theorem: 𝐸𝐸𝐸𝐸TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅𝑅
for 𝐸𝐸𝐸𝐸TM. We construct a decider for 𝐴𝐴TM as follows:
On input 𝑀𝑀 :
1. Construct TMs 𝑁𝑁1, 𝑁𝑁2 as follows:

𝑁𝑁1 = 𝑁𝑁2 =

2. Run 𝑅𝑅 on input 𝑁𝑁1,𝑁𝑁2
3. If 𝑅𝑅 accepts, accept. Otherwise, reject.

This is a reduction from 𝐸𝐸TM to 𝐸𝐸𝐸𝐸TM
11/3/2022 CS332 - Theory of Computation 15

Regular language testing for TMs
𝑅𝑅𝐸𝐸𝑅𝑅TM = 𝑀𝑀 𝑀𝑀 is a TM and 𝐻𝐻 𝑀𝑀 is regular}

Theorem: 𝑅𝑅𝐸𝐸𝑅𝑅TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅𝑅
for 𝑅𝑅𝐸𝐸𝑅𝑅TM. We construct a decider for 𝐴𝐴TM as follows:
On input 𝑀𝑀,𝑤𝑤 :
1. Construct a TM 𝑁𝑁 as follows:

2. Run 𝑅𝑅 on input 𝑁𝑁
3. If 𝑅𝑅 accepts, accept. Otherwise, reject

This is a reduction from 𝐴𝐴TM to 𝑅𝑅𝐸𝐸𝑅𝑅TM
11/3/2022 CS332 - Theory of Computation 16

Regular language testing for TMs
𝑅𝑅𝐸𝐸𝑅𝑅TM = 𝑀𝑀 𝑀𝑀 is a TM and 𝐻𝐻 𝑀𝑀 is regular}

Theorem: 𝑅𝑅𝐸𝐸𝑅𝑅TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅𝑅
for 𝑅𝑅𝐸𝐸𝑅𝑅TM. We construct a decider for 𝐴𝐴TM as follows:
On input 𝑀𝑀,𝑤𝑤 :
1. Construct a TM 𝑁𝑁 as follows:

𝑁𝑁 = “On input 𝑥𝑥,
1. If 𝑥𝑥 ∈ 0𝑛𝑛1𝑛𝑛 𝑛𝑛 ≥ 0}, accept
2. Run TM 𝑀𝑀 on input 𝑤𝑤
3. If 𝑀𝑀 accepts, accept. Otherwise, reject.”

2. Run 𝑅𝑅 on input 𝑁𝑁
3. If 𝑅𝑅 accepts, accept. Otherwise, reject

This is a reduction from 𝐴𝐴TM to 𝑅𝑅𝐸𝐸𝑅𝑅TM
11/3/2022 CS332 - Theory of Computation 17

Other undecidable
problems

11/3/2022 CS332 - Theory of Computation 18

Problems in Language Theory

Apparent dichotomy:
• TMs seem to be able to

solve problems about the
power of weaker
computational models
(e.g., DFAs)

• TMs can’t solve problems
about the power of TMs
themselves

Question: Are there
undecidable problems that
do not involve TM
descriptions?

11/3/2022 CS332 - Theory of Computation 19

𝑨𝑨𝐃𝐃𝐃𝐃𝐃𝐃
decidable

𝑬𝑬𝐃𝐃𝐃𝐃𝐃𝐃
decidable

𝑬𝑬𝑬𝑬𝐃𝐃𝐃𝐃𝐃𝐃
decidable

𝑨𝑨𝐓𝐓𝐓𝐓
undecidable

𝑬𝑬𝐓𝐓𝐓𝐓
undecidable

𝑬𝑬𝑬𝑬𝐓𝐓𝐓𝐓
undecidable

Undecidability of mathematics [Sipser 6.2]
Peano arithmetic: Formalization of mathematical
statements about the natural numbers, using +,×,≤
Ex: “There exist infinitely many primes”

Theorem [Church, Turing]:
TPA = 〈𝜑𝜑〉 𝜑𝜑 is a true statement in PA is
undecidable
Proof skeleton:

11/3/2022 CS332 - Theory of Computation 20

Gödel’s First Incompleteness Theorem [Sipser 6.2]
Theorem: There exists a true statement 𝜑𝜑 in Peano
arithmetic that is not provable
Proof idea:
Suppose for contradiction that every true statement is
provable. Then TPA = PPA where
PPA = 〈𝜑𝜑〉 𝜑𝜑 is a 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 statement in PA
Claim: PPA is Turing-recognizable
Construct a decider for TPA as follows:

11/3/2022 CS332 - Theory of Computation 21

A simple undecidable problem
Post Correspondence Problem (PCP) [Sipser 5.2]:

11/3/2022 CS332 - Theory of Computation 22

Domino: 𝑎𝑎
𝑎𝑎𝑎𝑎

. Top and bottom are strings.
Input: Collection of dominos.

𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝

,
𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝

,
𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝

,
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝

Match: List of some of the input dominos (repetitions
allowed) where top = bottom

𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝

,
𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝

,
𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝

,
𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝

,
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝

Problem: Does a match exist? This is undecidable

Computation History Method
A sequence of configurations 𝐶𝐶0, … ,𝐶𝐶ℓ is an accepting
computation history for TM 𝑀𝑀 on input 𝑤𝑤 if

1. 𝐶𝐶0 is the start configuration 𝑞𝑞0𝑤𝑤1 …𝑤𝑤𝑛𝑛
2. Every 𝐶𝐶𝑖𝑖+1 legally follows from 𝐶𝐶𝑖𝑖
3. 𝐶𝐶ℓ is an accepting configuration

Reduction from the undecidable language 𝐴𝐴TM to a language
𝐻𝐻 using the following idea:

Given an input 〈𝑀𝑀,𝑤𝑤〉 to 𝐴𝐴TM, the ability to solve 𝐻𝐻 enables
checking the existence of an accepting computation history for
𝑀𝑀 on 𝑤𝑤

11/3/2022 CS332 - Theory of Computation 23

	BU CS 332 – Theory of Computation
	Reductions
	Reductions
	Two uses of reductions
	Halting Problem
	Halting Problem
	Halting Problem
	Halting Problem
	Emptiness testing for TMs
	Emptiness testing for TMs
	Emptiness testing for TMs
	Interlude: Formalizing Reductions�(Sipser 6.3)
	Equality Testing for TMs
	Equality Testing for TMs
	Equality Testing for TMs
	Regular language testing for TMs
	Regular language testing for TMs
	Other undecidable problems
	Problems in Language Theory
	Undecidability of mathematics [Sipser 6.2]
	Gödel’s First Incompleteness Theorem [Sipser 6.2]
	A simple undecidable problem
	Computation History Method

