BU CS 332 — Theory of Computation

1
RS

https://forms.gle/T38zDHBgd62avxWy7 -=-= I

I‘_l:- i
-
E"I ﬁ
Lecture 16: Reading:
« More on Reductions Sipser Ch 5.1

Mark Bun
November 3, 2022

https://forms.gle/T38zDHBgd62avxWy7

Reductions

11/3/2022 CS332 - Theory of Computation

Reductions

A reduction from problem A to problem B is an algorithm

for problem A which uses an algorithm for problem B as a
subroutine

If such a reduction exists, we say “A reduces to B”

Positive uses: If A reduces to B and B is decidable, then A
is also decidable

Ex. Eppa is decidable = EQpp, is decidable

Negative uses: If A reduces to B and A is undecidable,
then B is also undecidable

Ex. UD is undecidable = A+, is undecidable

11/3/2022 CS332 - Theory of Computation 3

Two uses of reductions

Negative uses: If A reduces to B and A is undecidable,
then B is also undecidable

Template for undecidability proof by reduction:
1. Suppose to the contrary that B is decidable

2. Using a decider for B as a subroutine, construct an
algorithm deciding A

3. But A is undecidable. Contradiction!

Halting Problem
Computational problem: Given a program (TM; and input w,

does that program halt (either accept or reject) on input w?

Formulation as a language:
HALTyy = {(M,w) |M is a TM that halts on input w}

Ex. M = “On input x (a natural number written in binary):
Foreachy = 1,2,3, ...:
If y2 = x, accept. Else, continue.”

o
0

a) Yes, because M accepts on input 101 rr::r"ll"'_l-hj.
b) Yes, because M rejects on input 101 '*TT-_',E:';EE?._:-;.;
ot

c) No, because M rejects on input 101
d) No, because M loops on input 101

11/3/2022 CS332 - Theory of Computation

=

1
!':.
i

Halting Problem
Computational problem: Given a program (TM; and input w,
does that program halt (either accept or reject) on input w?

Formulation as a language:
HALTyy = {(M,w) |M is a TM that halts on input w}

Ex. M = “On input x (a natural number in binary):
Foreachy = 1,2,3, ...:
If y2 = x, accept. Else, continue.”

M' = “On input x (a natural number in binary):
Foreachy =1,2,3,...,x
|f y2 = x, accept. Else, continue.

Reject.”

11/3/2022 CS332 - Theory of Computation

Halting Problem
HALTry = {{M,w) |M is a TM that halts on input w}

Theorem: HALTty is undecidable

Proof: Suppose for contradiction that there exists a decider H
for HALTty. We construct a decider for V for Aty as follows:

On input (M, w):

1. Run H oninput (M, w)

2. If H rejects, reject

3. If H accepts, run M onw

4. If M accepts, accept
Otherwise, reject.

This is a reduction from Aty to HALTTM

11/3/2022 CS332 - Theory of Computation

Halting Problem

Computational problem: Given a program (TM) and input
w, does that program halt on input w?

* A central problem in formal verification

* Dealing with undecidability in practice:

- Use heuristics that are correct on most real instances,
but may be wrong or loop forever on others

- Restrict to a “non-Turing-complete” subclass of
programs for which halting is decidable

- Use a programming language that lets a programmer
specify hints (e.g., loop invariants) that can be
compiled into a formal proof of halting

Emptiness testing for TMs

Erpy = {{M) |MisaTMand L(M) = @}
Theorem: Ety is undecidable

Proof: Suppose for contradiction that there exists a decider R
for ETp. We construct a decider for Aty as follows:

On input (M, w):
1. Run R oninput ???

This is a reduction from Aty to Ey

11/3/2022 CS332 - Theory of Computation 9

Emptiness testing for TMs

Ery = ((M) |MisaTMand L(M) = ¢} [Elifa

Theorem: Etp is undecidable

Proof: Suppose for contradiction that there exists a decider R
for Etnv. We construct a decider for Aty as follows:

On input (M, w):
1. Constructa TM N as follows:

2. Run R on input (N)

3.1fR

, accept. Otherwise, reject

11/3/2022

Ty
o :#'..

I:- I

[=]
-r;ﬂ'
[a]

=
I|:.

'l-|

r

|
|'|

-_.

What do we want out of

machine N?

a) L(N)isemptyiff M
accepts w

b) L(N) is non-empty iff M
accepts w

c) L(M)isemptyiff N
accepts w

d) L(M) is non-empty iff N
accepts w

This is a reduction from Aty to Ey

CS332 - Theory of Computation

10

Emptiness testing for TMs

Erpy = {{M)|MisaTMand L(M) = @}
Theorem: Etp is undecidable

Proof: Suppose for contradiction that there exists a decider R
for ETy. We construct a decider for Aty as follows:

On input (M, w):
1. Constructa TM N as follows:
“On input x:
Run M on w and output the result.”
2. Run R on input (N)
3. If R rejects, accept. Otherwise, reject

This is a reduction from Aty to Ey

11/3/2022 CS332 - Theory of Computation 11

Interlude: Formalizing Reductions
(Sipser 6.3)

Informally: A reduces to B if a decider for B can be used
to construct a decider for A

One way to formalize:

* An oracle for language B is a device that can answer
qguestions “Isw € B?”

* An oracle TM M?B is a TM that can query an oracle for B
in one computational step

A is Turing-reducible to B (written A <+ B) if thereis an
oracle TM M2 deciding A

11/3/2022 CS332 - Theory of Computation 12

Equality Testing for TMs

EQrm = {{My, M3) |My, M, are TMs and L(M;) = L(M,)}
Theorem: EQTy is undecidable

Proof: Suppose for contradiction that there exists a decider R
for EQry. We construct a decider for ETy as follows:

On input (M):
1. Construct TMs Ny, N, as follows:
N]_ - N2 =

2. Run R on input (N, N,)
3. If R accepts, accept. Otherwise, reject.

This is a reduction from E1y to EQ1m

11/3/2022 CS332 - Theory of Computation 13

Equality Testing for TMs e

o
What do we want out of the machines Ny, N, ? EIF,"@
c) LIM)=0Qiff Ny# N, d)L(M)=0@iff L(N;) # L(N,)

On input (M):
1. Construct TMs Ny, N, as follows:
N]_ - NZ =

2. Run R on input (Ny, N,)
3. If R accepts, accept. Otherwise, reject.

This is a reduction from E1y to EQ1m

11/3/2022 CS332 - Theory of Computation 14

Equality Testing for TMs

EQrm = {{My, M3) |My, M, are TMs and L(M;) = L(M,)}
Theorem: EQTy is undecidable

Proof: Suppose for contradiction that there exists a decider R
for EQ1y. We construct a decider for Aty as follows:

On input (M):
1. Construct TMs Ny, N, as follows:
N]_ - N2 =

2. Run R on input (N, N,)
3. If R accepts, accept. Otherwise, reject.

This is a reduction from E1y to EQ1m

11/3/2022 CS332 - Theory of Computation 15

Regular [anguage testing for TMs

REGty = {{M) |[M isa TM and L(M) is regular}
Theorem: RE Gty is undecidable

Proof: Suppose for contradiction that there exists a decider R
for REGTy. We construct a decider for Aty as follows:

On input (M, w):
1. Constructa TM N as follows:

2. Run R on input (N)
3. If R accepts, accept. Otherwise, reject

This is a reduction from Aty to REGy

11/3/2022 CS332 - Theory of Computation 16

Regular [anguage testing for TMs

REGty = {{M) |[M isa TM and L(M) is regular}
Theorem: RE Gty is undecidable

Proof: Suppose for contradiction that there exists a decider R
for REGTy. We construct a decider for Aty as follows:

On input (M, w):
1. Constructa TM N as follows:
N =“Oninput x,
1.1f x € {0™"1™ | n = 0}, accept
2. Run TM M on input w

3. If M accepts, accept. Otherwise, reject.”
2. Run R on input (N)

3. If R accepts, accept. Otherwise, reject

This is a reduction from Aty to REGy

11/3/2022 CS332 - Theory of Computation 17

Other undecidable
oroblems

11/3/2022 (S332 -Theory o f Computation

Problems in Language Theory

Apparent dichotomy:

* TMs seem to be able to
solve problems about the
power of weaker
computational models
(e.g., DFAS)

* TMs can’t solve problems EDFA ETM
about the power of TMs decidable undecidable
themselves

Question: Are there E

undecidable problems that ,QDFA EQ,TM

descriptions?

11/3/2022 CS332 - Theory of Computation 19

Undecidability of mathematics [Sipser 6.2]

Peano arithmetic: Formalization of mathematical
statements about the natural numbers, using +,%X, <

Ex: “There exist infinitely many primes”

Theorem [Church, Turing]:

TPA = {{¢) | @ is a true statement in PA } is
undecidable

Proof skeleton:

11/3/2022 CS332 - Theory of Computation 20

Godel’s First Incompleteness Theorem [Sipser 6.2]

Theorem: There exists a true statement @ in Peano
arithmetic that is not provable

Proof idea:

Suppose for contradiction that every true statement is
provable. Then TPA = PPA where

PPA = { (@) | ¢ is a provable statement in PA }
Claim: PPA is Turing-recognizable
Construct a decider for TPA as follows:

11/3/2022 CS332 - Theory of Computation 21

A simple undecidable problem
Post Correspondence Problem (PCP) [Sipser 5.2]:

Domino: aab] Top and bottom are strings.
Input: Collection of dominos.

il e a5

Match: List of some of the input dominos (repetitions
allowed) where top = bottom

2]) o] el [

Problem: Does a match exist? This is undecidable

11/3/2022 CS332 - Theory of Computation 22

Computation History Method

A sequence of configurations C,, ..., C, is an accepting
computation history for TM M on input w if

1. Cy is the start configuration gow; ... w,,
2. Every C;,q legally follows from C;
3. Cy is an accepting configuration

Reduction from the undecidable language Aty to a language
L using the following idea:

Given an input (M, w) to A1y, the ability to solve L enables
checking the existence of an accepting computation history for
M onw

	BU CS 332 – Theory of Computation
	Reductions
	Reductions
	Two uses of reductions
	Halting Problem
	Halting Problem
	Halting Problem
	Halting Problem
	Emptiness testing for TMs
	Emptiness testing for TMs
	Emptiness testing for TMs
	Interlude: Formalizing Reductions�(Sipser 6.3)
	Equality Testing for TMs
	Equality Testing for TMs
	Equality Testing for TMs
	Regular language testing for TMs
	Regular language testing for TMs
	Other undecidable problems
	Problems in Language Theory
	Undecidability of mathematics [Sipser 6.2]
	Gödel’s First Incompleteness Theorem [Sipser 6.2]
	A simple undecidable problem
	Computation History Method

