BU CS 332 – Theory of Computation

https://forms.gle/T38zDHBgd62avxWy7

Lecture 16:

More on Reductions

Reading:

Sipser Ch 5.1

Mark Bun November 3, 2022

Reductions

Reductions

A reduction from problem A to problem B is an algorithm for problem A which uses an algorithm for problem B as a subroutine

If such a reduction exists, we say "A reduces to B"

Positive uses: If A reduces to B and B is decidable, then A is also decidable

Ex. E_{DFA} is decidable $\Rightarrow EQ_{\mathrm{DFA}}$ is decidable

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

Ex. UD is undecidable $\Rightarrow A_{TM}$ is undecidable

Two uses of reductions

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

Template for undecidability proof by reduction:

- 1. Suppose to the contrary that B is decidable
- 2. Using a decider for B as a subroutine, construct an algorithm deciding A
- 3. But *A* is undecidable. Contradiction!

Computational problem: Given a program (TM) and input w, does that program halt (either accept or reject) on input w?

Formulation as a language:

 $HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that halts on input } w\}$

Ex. M = "On input x (a natural number written in binary): For each y = 1, 2, 3, ...: If $y^2 = x$, accept. Else, continue."

Is $\langle M, 101 \rangle \in HALT_{TM}$?

- a) Yes, because M accepts on input 101
- b) Yes, because *M* rejects on input 101
- c) No, because *M* rejects on input 101
- d) No, because M loops on input $101\,$

Computational problem: Given a program (TM) and input w, does that program halt (either accept or reject) on input w?

Formulation as a language: $HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that halts on input } w\}$

Ex. M = "On input x (a natural number in binary): For each y=1,2,3,...: If $y^2=x$, accept. Else, continue."

M' = "On input x (a natural number in binary): For each y=1,2,3,...,x: If $y^2=x$, accept. Else, continue. Reject."

 $HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that halts on input } w\}$

Theorem: $HALT_{TM}$ is undecidable

Proof: Suppose for contradiction that there exists a decider H for $HALT_{\rm TM}$. We construct a decider for V for $A_{\rm TM}$ as follows:

On input $\langle M, w \rangle$:

- 1. Run H on input $\langle M, w \rangle$
- 2. If H rejects, reject
- 3. If H accepts, run M on w
- 4. If *M* accepts, accept Otherwise, reject.

Computational problem: Given a program (TM) and input w, does that program halt on input w?

- A central problem in formal verification
- Dealing with undecidability in practice:
 - Use heuristics that are correct on most real instances, but may be wrong or loop forever on others
 - Restrict to a "non-Turing-complete" subclass of programs for which halting is decidable
 - Use a programming language that lets a programmer specify hints (e.g., loop invariants) that can be compiled into a formal proof of halting

Emptiness testing for TMs

$$E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$$

Theorem: E_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for $E_{\rm TM}$. We construct a decider for $A_{\rm TM}$ as follows:

```
On input \langle M, w \rangle:
```

1. Run *R* on input ???

This is a reduction from $A_{\rm TM}$ to $E_{\rm TM}$

Emptiness testing for TMs

$$E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$$

Theorem: E_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for $E_{\rm TM}$. We construct a decider for $A_{\rm TM}$ as follows:

On input $\langle M, w \rangle$:

Construct a TM N as follows:

- 2. Run R on input $\langle N \rangle$
- 3. If R, accept. Otherwise, reject

What do we want out of machine *N*?

- a) L(N) is empty iff M accepts w
- b) L(N) is non-empty iff M accepts w
- c) L(M) is empty iff N accepts w
- d) L(M) is non-empty iff N accepts w

This is a reduction from $A_{\rm TM}$ to $E_{\rm TM}$

Emptiness testing for TMs

$$E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$$

Theorem: E_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for $E_{\rm TM}$. We construct a decider for $A_{\rm TM}$ as follows:

On input $\langle M, w \rangle$:

Construct a TM N as follows:

"On input x:

Run M on w and output the result."

- 2. Run R on input $\langle N \rangle$
- 3. If *R* rejects, accept. Otherwise, reject

This is a reduction from $A_{\rm TM}$ to $E_{\rm TM}$

Interlude: Formalizing Reductions (Sipser 6.3)

Informally: A reduces to B if a decider for B can be used to construct a decider for A

One way to formalize:

- An *oracle* for language B is a device that can answer questions "Is $w \in B$?"
- An oracle $TM\ M^B$ is a TM that can query an oracle for B in one computational step

A is Turing-reducible to B (written $A \leq_T B$) if there is an oracle TM M^B deciding A

Equality Testing for TMs

$$EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$$

Theorem: EQ_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for EQ_{TM} . We construct a decider for E_{TM} as follows:

On input $\langle M \rangle$:

1. Construct TMs N_1 , N_2 as follows:

$$N_1 = N_2 =$$

- 2. Run R on input $\langle N_1, N_2 \rangle$
- 3. If R accepts, accept. Otherwise, reject.

This is a reduction from E_{TM} to EQ_{TM}

Equality Testing for TMs

What do we want out of the machines N_1 , N_2 ?

a)
$$L(M) = \emptyset$$
 iff $N_1 = N_2$

a)
$$L(M) = \emptyset$$
 iff $N_1 = N_2$ b) $L(M) = \emptyset$ iff $L(N_1) = L(N_2)$

c)
$$L(M) = \emptyset$$
 iff $N_1 \neq N_2$

c)
$$L(M) = \emptyset$$
 iff $N_1 \neq N_2$ d) $L(M) = \emptyset$ iff $L(N_1) \neq L(N_2)$

On input $\langle M \rangle$:

Construct TMs N_1 , N_2 as follows:

$$N_1 =$$

$$N_2 =$$

- 2. Run R on input $\langle N_1, N_2 \rangle$
- 3. If *R* accepts, accept. Otherwise, reject.

This is a reduction from $E_{\rm TM}$ to $EQ_{\rm TM}$

Equality Testing for TMs

$$EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$$

Theorem: EQ_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for EQ_{TM} . We construct a decider for A_{TM} as follows:

On input $\langle M \rangle$:

1. Construct TMs N_1 , N_2 as follows:

$$N_1 = N_2 =$$

- 2. Run R on input $\langle N_1, N_2 \rangle$
- 3. If R accepts, accept. Otherwise, reject.

This is a reduction from E_{TM} to EQ_{TM}

Regular language testing for TMs

 $REG_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular} \}$

Theorem: REG_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for $REG_{\rm TM}$. We construct a decider for $A_{\rm TM}$ as follows:

On input $\langle M, w \rangle$:

1. Construct a TM N as follows:

- 2. Run R on input $\langle N \rangle$
- 3. If R accepts, accept. Otherwise, reject

This is a reduction from $A_{\rm TM}$ to $REG_{\rm TM}$

Regular language testing for TMs

 $REG_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular} \}$

Theorem: REG_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for $REG_{\rm TM}$. We construct a decider for $A_{\rm TM}$ as follows:

On input $\langle M, w \rangle$:

Construct a TM N as follows:

N = "On input x,

- 1. If $x \in \{0^n 1^n \mid n \ge 0\}$, accept
- 2. Run TM *M* on input *w*
- 3. If *M* accepts, accept. Otherwise, reject."
- 2. Run R on input $\langle N \rangle$
- 3. If R accepts, accept. Otherwise, reject

This is a reduction from $A_{\rm TM}$ to $REG_{\rm TM}$

Other undecidable problems

Problems in Language Theory

Apparent dichotomy:

- TMs seem to be able to solve problems about the power of weaker computational models (e.g., DFAs)
- TMs can't solve problems about the power of TMs themselves

Question: Are there undecidable problems that do not involve TM descriptions?

A _{DFA} decidable	A _{TM} undecidable
E _{DFA} decidable	E _{TM} undecidable
EQ _{DFA} decidable	EQ _{TM} undecidable

Undecidability of mathematics [Sipser 6.2]

Peano arithmetic: Formalization of mathematical statements about the natural numbers, using $+,\times,\leq$

Ex: "There exist infinitely many primes"

Theorem [Church, Turing]:

TPA = $\{\langle \varphi \rangle \mid \varphi \text{ is a true statement in PA} \}$ is undecidable

Proof skeleton:

Gödel's First Incompleteness Theorem [Sipser 6.2]

Theorem: There exists a true statement φ in Peano arithmetic that is not provable

Proof idea:

Suppose for contradiction that every true statement is provable. Then TPA = PPA where

 $PPA = \{ \langle \varphi \rangle \mid \varphi \text{ is a } provable \text{ statement in PA} \}$

Claim: PPA is Turing-recognizable

Construct a decider for TPA as follows:

A simple undecidable problem

Post Correspondence Problem (PCP) [Sipser 5.2]:

Domino: $\left[\frac{a}{ab}\right]$. Top and bottom are strings.

Input: Collection of dominos.

$$\left[\frac{aa}{aba}\right], \left[\frac{ab}{aba}\right], \left[\frac{ba}{aa}\right], \left[\frac{abab}{b}\right]$$

Match: List of some of the input dominos (repetitions allowed) where top = bottom

$$\left[\frac{ab}{aba}\right], \left[\frac{aa}{aba}\right], \left[\frac{ba}{aa}\right], \left[\frac{aa}{aba}\right], \left[\frac{abab}{b}\right]$$

Problem: Does a match exist?

This is undecidable

Computation History Method

A sequence of configurations $C_0, ..., C_\ell$ is an accepting computation history for TM M on input w if

- 1. C_0 is the start configuration $q_0w_1 \dots w_n$
- 2. Every C_{i+1} legally follows from C_i
- 3. C_{ℓ} is an accepting configuration

Reduction from the undecidable language $A_{\rm TM}$ to a language L using the following idea:

Given an input $\langle M, w \rangle$ to $A_{\rm TM}$, the ability to solve L enables checking the existence of an accepting computation history for M on w