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Reductions
A reduction from problem 𝐴𝐴 to problem 𝐵𝐵 is an algorithm 
for problem 𝐴𝐴 which uses an algorithm for problem 𝐵𝐵 as a 
subroutine
If such a reduction exists, we say “𝐴𝐴 reduces to 𝐵𝐵”
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Positive uses: If 𝐴𝐴 reduces to 𝐵𝐵 and 𝐵𝐵 is decidable, then 𝐴𝐴
is also decidable
Ex. 𝐸𝐸DFA is decidable ⇒ 𝐸𝐸𝐸𝐸DFA is decidable

Negative uses: If 𝐴𝐴 reduces to 𝐵𝐵 and 𝐴𝐴 is undecidable, 
then 𝐵𝐵 is also undecidable
Ex. 𝑈𝑈𝐷𝐷 is undecidable ⇒ 𝐴𝐴TM is undecidable 



Two uses of reductions
Negative uses: If 𝐴𝐴 reduces to 𝐵𝐵 and 𝐴𝐴 is undecidable, 
then 𝐵𝐵 is also undecidable

Template for undecidability proof by reduction:
1. Suppose to the contrary that 𝐵𝐵 is decidable
2. Using a decider for 𝐵𝐵 as a subroutine, construct an 

algorithm deciding 𝐴𝐴
3. But 𝐴𝐴 is undecidable. Contradiction!
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Halting Problem
Computational problem: Given a program (TM) and input 𝑤𝑤, 
does that program halt (either accept or reject) on input 𝑤𝑤?
Formulation as a language:

𝐻𝐻𝐴𝐴𝐻𝐻𝐻𝐻TM = 𝑀𝑀,𝑤𝑤 𝑀𝑀 is a TM that halts on input 𝑤𝑤}

Ex. 𝑀𝑀 = “On input 𝑥𝑥 (a natural number written in binary):
For each 𝑦𝑦 = 1, 2, 3, … :

If 𝑦𝑦2 = 𝑥𝑥, accept. Else, continue.”

Is 𝑀𝑀, 101 ∈ 𝐻𝐻𝐴𝐴𝐻𝐻𝐻𝐻TM?
a) Yes, because 𝑀𝑀 accepts on input 101
b) Yes, because 𝑀𝑀 rejects on input 101
c) No, because 𝑀𝑀 rejects on input 101
d) No, because 𝑀𝑀 loops on input 101
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Halting Problem
Computational problem: Given a program (TM) and input 𝑤𝑤, 
does that program halt (either accept or reject) on input 𝑤𝑤?
Formulation as a language:

𝐻𝐻𝐴𝐴𝐻𝐻𝐻𝐻TM = 𝑀𝑀,𝑤𝑤 𝑀𝑀 is a TM that halts on input 𝑤𝑤}

Ex. 𝑀𝑀 = “On input 𝑥𝑥 (a natural number in binary):
For each 𝑦𝑦 = 1, 2, 3, … :

If 𝑦𝑦2 = 𝑥𝑥, accept. Else, continue.”

𝑀𝑀′ = “On input 𝑥𝑥 (a natural number in binary):
For each 𝑦𝑦 = 1, 2, 3, … , 𝑥𝑥 :

If 𝑦𝑦2 = 𝑥𝑥, accept. Else, continue.
Reject.”
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Halting Problem
𝐻𝐻𝐴𝐴𝐻𝐻𝐻𝐻TM = 𝑀𝑀,𝑤𝑤 𝑀𝑀 is a TM that halts on input 𝑤𝑤}

Theorem: 𝐻𝐻𝐴𝐴𝐻𝐻𝐻𝐻TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝐻𝐻
for 𝐻𝐻𝐴𝐴𝐻𝐻𝐻𝐻TM. We construct a decider for 𝑉𝑉 for 𝐴𝐴TM as follows:
On input 𝑀𝑀,𝑤𝑤 :
1. Run 𝐻𝐻 on input 𝑀𝑀,𝑤𝑤
2. If 𝐻𝐻 rejects, reject
3. If 𝐻𝐻 accepts, run 𝑀𝑀 on 𝑤𝑤
4. If 𝑀𝑀 accepts, accept

Otherwise, reject.

This is a reduction from 𝐴𝐴TM to 𝐻𝐻𝐴𝐴𝐻𝐻𝐻𝐻TM
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Halting Problem
Computational problem: Given a program (TM) and input 
𝑤𝑤, does that program halt on input 𝑤𝑤?
• A central problem in formal verification
• Dealing with undecidability in practice:

- Use heuristics that are correct on most real instances, 
but may be wrong or loop forever on others

- Restrict to a “non-Turing-complete” subclass of 
programs for which halting is decidable

- Use a programming language that lets a programmer 
specify hints (e.g., loop invariants) that can be 
compiled into a formal proof of halting
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Emptiness testing for TMs
𝐸𝐸TM = 𝑀𝑀 𝑀𝑀 is a TM and 𝐻𝐻 𝑀𝑀 = ∅}

Theorem: 𝐸𝐸TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅𝑅
for 𝐸𝐸TM. We construct a decider for 𝐴𝐴TM as follows:
On input 𝑀𝑀,𝑤𝑤 :
1. Run 𝑅𝑅 on input ???

This is a reduction from 𝐴𝐴TM to 𝐸𝐸TM
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Emptiness testing for TMs
𝐸𝐸TM = 𝑀𝑀 𝑀𝑀 is a TM and 𝐻𝐻 𝑀𝑀 = ∅}

Theorem: 𝐸𝐸TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅𝑅
for 𝐸𝐸TM. We construct a decider for 𝐴𝐴TM as follows:
On input 𝑀𝑀,𝑤𝑤 :
1. Construct a TM 𝑁𝑁 as follows:

2. Run 𝑅𝑅 on input 𝑁𝑁
3. If 𝑅𝑅 , accept. Otherwise, reject

This is a reduction from 𝐴𝐴TM to 𝐸𝐸TM
11/3/2022 CS332 - Theory of Computation 10

What do we want out of 
machine 𝑁𝑁?
a) 𝐻𝐻(𝑁𝑁) is empty iff 𝑀𝑀

accepts 𝑤𝑤
b) 𝐻𝐻(𝑁𝑁) is non-empty iff 𝑀𝑀

accepts 𝑤𝑤
c) 𝐻𝐻(𝑀𝑀) is empty iff 𝑁𝑁

accepts 𝑤𝑤
d) 𝐻𝐻 𝑀𝑀 is non-empty iff 𝑁𝑁

accepts 𝑤𝑤



Emptiness testing for TMs
𝐸𝐸TM = 𝑀𝑀 𝑀𝑀 is a TM and 𝐻𝐻 𝑀𝑀 = ∅}

Theorem: 𝐸𝐸TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅𝑅
for 𝐸𝐸TM. We construct a decider for 𝐴𝐴TM as follows:
On input 𝑀𝑀,𝑤𝑤 :
1. Construct a TM 𝑁𝑁 as follows:

“On input 𝑥𝑥:
Run 𝑀𝑀 on 𝑤𝑤 and output the result.”

2. Run 𝑅𝑅 on input 𝑁𝑁
3. If 𝑅𝑅 rejects, accept. Otherwise, reject

This is a reduction from 𝐴𝐴TM to 𝐸𝐸TM
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Interlude: Formalizing Reductions
(Sipser 6.3)

Informally: 𝐴𝐴 reduces to 𝐵𝐵 if a decider for 𝐵𝐵 can be used 
to construct a decider for 𝐴𝐴
One way to formalize:
• An oracle for language 𝐵𝐵 is a device that can answer 

questions “Is 𝑤𝑤 ∈ 𝐵𝐵?”
• An oracle TM 𝑀𝑀𝐵𝐵 is a TM that can query an oracle for 𝐵𝐵

in one computational step

𝐴𝐴 is Turing-reducible to 𝐵𝐵 (written 𝐴𝐴 ≤𝑇𝑇 𝐵𝐵) if there is an 
oracle TM 𝑀𝑀𝐵𝐵 deciding 𝐴𝐴
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Equality Testing for TMs
𝐸𝐸𝐸𝐸TM = 𝑀𝑀1,𝑀𝑀2 𝑀𝑀1,𝑀𝑀2 are TMs and 𝐻𝐻 𝑀𝑀1 = 𝐻𝐻 𝑀𝑀2 }

Theorem: 𝐸𝐸𝐸𝐸TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅𝑅
for 𝐸𝐸𝐸𝐸TM. We construct a decider for 𝐸𝐸TM as follows:
On input 𝑀𝑀 :
1. Construct TMs 𝑁𝑁1, 𝑁𝑁2 as follows:

𝑁𝑁1 = 𝑁𝑁2 =

2. Run 𝑅𝑅 on input 𝑁𝑁1,𝑁𝑁2
3. If 𝑅𝑅 accepts, accept. Otherwise, reject.

This is a reduction from 𝐸𝐸TM to 𝐸𝐸𝐸𝐸TM
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Equality Testing for TMs
What do we want out of the machines 𝑁𝑁1,𝑁𝑁2?
a)  𝐻𝐻 𝑀𝑀 = ∅ iff 𝑁𝑁1 = 𝑁𝑁2 b) 𝐻𝐻 𝑀𝑀 = ∅ iff 𝐻𝐻 𝑁𝑁1 = 𝐻𝐻 𝑁𝑁2
c)  𝐻𝐻 𝑀𝑀 = ∅ iff 𝑁𝑁1 ≠ 𝑁𝑁2 d) 𝐻𝐻 𝑀𝑀 = ∅ iff 𝐻𝐻 𝑁𝑁1 ≠ 𝐻𝐻 𝑁𝑁2

On input 𝑀𝑀 :
1. Construct TMs 𝑁𝑁1, 𝑁𝑁2 as follows:

𝑁𝑁1 = 𝑁𝑁2 =

2. Run 𝑅𝑅 on input 𝑁𝑁1,𝑁𝑁2
3. If 𝑅𝑅 accepts, accept. Otherwise, reject.

This is a reduction from 𝐸𝐸TM to 𝐸𝐸𝐸𝐸TM
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Equality Testing for TMs
𝐸𝐸𝐸𝐸TM = 𝑀𝑀1,𝑀𝑀2 𝑀𝑀1,𝑀𝑀2 are TMs and 𝐻𝐻 𝑀𝑀1 = 𝐻𝐻 𝑀𝑀2 }

Theorem: 𝐸𝐸𝐸𝐸TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅𝑅
for 𝐸𝐸𝐸𝐸TM. We construct a decider for 𝐴𝐴TM as follows:
On input 𝑀𝑀 :
1. Construct TMs 𝑁𝑁1, 𝑁𝑁2 as follows:

𝑁𝑁1 = 𝑁𝑁2 =

2. Run 𝑅𝑅 on input 𝑁𝑁1,𝑁𝑁2
3. If 𝑅𝑅 accepts, accept. Otherwise, reject.

This is a reduction from 𝐸𝐸TM to 𝐸𝐸𝐸𝐸TM
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Regular language testing for TMs
𝑅𝑅𝐸𝐸𝑅𝑅TM = 𝑀𝑀 𝑀𝑀 is a TM and 𝐻𝐻 𝑀𝑀 is regular}

Theorem: 𝑅𝑅𝐸𝐸𝑅𝑅TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅𝑅
for 𝑅𝑅𝐸𝐸𝑅𝑅TM. We construct a decider for 𝐴𝐴TM as follows:
On input 𝑀𝑀,𝑤𝑤 :
1. Construct a TM 𝑁𝑁 as follows:

2. Run 𝑅𝑅 on input 𝑁𝑁
3. If 𝑅𝑅 accepts, accept. Otherwise, reject

This is a reduction from 𝐴𝐴TM to 𝑅𝑅𝐸𝐸𝑅𝑅TM
11/3/2022 CS332 - Theory of Computation 16



Regular language testing for TMs
𝑅𝑅𝐸𝐸𝑅𝑅TM = 𝑀𝑀 𝑀𝑀 is a TM and 𝐻𝐻 𝑀𝑀 is regular}

Theorem: 𝑅𝑅𝐸𝐸𝑅𝑅TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅𝑅
for 𝑅𝑅𝐸𝐸𝑅𝑅TM. We construct a decider for 𝐴𝐴TM as follows:
On input 𝑀𝑀,𝑤𝑤 :
1. Construct a TM 𝑁𝑁 as follows:

𝑁𝑁 = “On input 𝑥𝑥,
1. If 𝑥𝑥 ∈ 0𝑛𝑛1𝑛𝑛 𝑛𝑛 ≥ 0}, accept
2. Run TM 𝑀𝑀 on input 𝑤𝑤
3. If 𝑀𝑀 accepts, accept. Otherwise, reject.”

2. Run 𝑅𝑅 on input 𝑁𝑁
3. If 𝑅𝑅 accepts, accept. Otherwise, reject

This is a reduction from 𝐴𝐴TM to 𝑅𝑅𝐸𝐸𝑅𝑅TM
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Other undecidable 
problems
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Problems in Language Theory

Apparent dichotomy:
• TMs seem to be able to 

solve problems about the 
power of weaker 
computational models 
(e.g., DFAs)

• TMs can’t solve problems 
about the power of TMs 
themselves

Question: Are there 
undecidable problems that 
do not involve TM 
descriptions?
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𝑨𝑨𝐃𝐃𝐃𝐃𝐃𝐃
decidable

𝑬𝑬𝐃𝐃𝐃𝐃𝐃𝐃
decidable

𝑬𝑬𝑬𝑬𝐃𝐃𝐃𝐃𝐃𝐃
decidable

𝑨𝑨𝐓𝐓𝐓𝐓
undecidable

𝑬𝑬𝐓𝐓𝐓𝐓
undecidable

𝑬𝑬𝑬𝑬𝐓𝐓𝐓𝐓
undecidable



Undecidability of mathematics [Sipser 6.2]
Peano arithmetic: Formalization of mathematical 
statements about the natural numbers, using +,×,≤
Ex: “There exist infinitely many primes”

Theorem [Church, Turing]:
TPA = 〈𝜑𝜑〉 𝜑𝜑 is a true statement in PA is 
undecidable
Proof skeleton:
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Gödel’s First Incompleteness Theorem [Sipser 6.2]
Theorem: There exists a true statement 𝜑𝜑 in Peano
arithmetic that is not provable
Proof idea:
Suppose for contradiction that every true statement is 
provable. Then TPA = PPA where
PPA = 〈𝜑𝜑〉 𝜑𝜑 is a 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 statement in PA
Claim: PPA is Turing-recognizable
Construct a decider for TPA as follows:
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A simple undecidable problem
Post Correspondence Problem (PCP) [Sipser 5.2]:
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Domino: 𝑎𝑎
𝑎𝑎𝑎𝑎

. Top and bottom are strings.
Input: Collection of dominos.

𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝

,
𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝

,
𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝

,
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝

Match: List of some of the input dominos (repetitions 
allowed) where top = bottom

𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝

,
𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝

,
𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝

,
𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝

,
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝

Problem: Does a match exist? This is undecidable



Computation History Method
A sequence of configurations 𝐶𝐶0, … ,𝐶𝐶ℓ is an accepting 
computation history for TM 𝑀𝑀 on input 𝑤𝑤 if

1. 𝐶𝐶0 is the start configuration 𝑞𝑞0𝑤𝑤1 …𝑤𝑤𝑛𝑛
2. Every 𝐶𝐶𝑖𝑖+1 legally follows from 𝐶𝐶𝑖𝑖
3. 𝐶𝐶ℓ is an accepting configuration

Reduction from the undecidable language 𝐴𝐴TM to a language 
𝐻𝐻 using the following idea:

Given an input 〈𝑀𝑀,𝑤𝑤〉 to 𝐴𝐴TM, the ability to solve 𝐻𝐻 enables 
checking the existence of an accepting computation history for 
𝑀𝑀 on 𝑤𝑤
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