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Reductions

A reduction from problem A to problem B is an algorithm

for problem A which uses an algorithm for problem B as a
subroutine

If such a reduction exists, we say “A reduces to B”

Positive uses: If A reduces to B and B is decidable, then A
is also decidable

Ex. Eppa is decidable = EQpp, is decidable

Negative uses: If A reduces to B and A is undecidable,
then B is also undecidable

Ex. UD is undecidable = A+, is undecidable
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Two uses of reductions

Negative uses: If A reduces to B and A is undecidable,
then B is also undecidable

Template for undecidability proof by reduction:
1. Suppose to the contrary that B is decidable

2. Using a decider for B as a subroutine, construct an
algorithm deciding A

3. But A is undecidable. Contradiction!



Halting Problem
Computational problem: Given a program (TM; and input w,

does that program halt (either accept or reject) on input w?

Formulation as a language:
HALTyy = {(M,w) |M is a TM that halts on input w}

Ex. M = “On input x (a natural number written in binary):
Foreachy = 1,2,3, ...:
If y2 = x, accept. Else, continue.”

o
0

a) Yes, because M accepts on input 101 rr::r"ll"'_l-hj.
b) Yes, because M rejects on input 101 '*TT-_',E:';EE?._:-;.;
ot

c) No, because M rejects on input 101
d) No, because M loops on input 101
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Halting Problem
Computational problem: Given a program (TM; and input w,
does that program halt (either accept or reject) on input w?

Formulation as a language:
HALTyy = {(M,w) |M is a TM that halts on input w}

Ex. M = “On input x (a natural number in binary):
Foreachy = 1,2,3, ...:
If y2 = x, accept. Else, continue.”

M' = “On input x (a natural number in binary):
Foreachy =1,2,3,...,x
|f y2 = x, accept. Else, continue.

Reject.”
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Halting Problem
HALTry = {{M,w) |M is a TM that halts on input w}

Theorem: HALTty is undecidable

Proof: Suppose for contradiction that there exists a decider H
for HALTty. We construct a decider for V for Aty as follows:

On input (M, w):

1. Run H oninput (M, w)

2. If H rejects, reject

3. If H accepts, run M onw

4. If M accepts, accept
Otherwise, reject.

This is a reduction from Aty to HALTTM
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Halting Problem

Computational problem: Given a program (TM) and input
w, does that program halt on input w?

* A central problem in formal verification

* Dealing with undecidability in practice:

- Use heuristics that are correct on most real instances,
but may be wrong or loop forever on others

- Restrict to a “non-Turing-complete” subclass of
programs for which halting is decidable

- Use a programming language that lets a programmer
specify hints (e.g., loop invariants) that can be
compiled into a formal proof of halting



Emptiness testing for TMs

Erpy = {{M) |MisaTMand L(M) = @}
Theorem: Ety is undecidable

Proof: Suppose for contradiction that there exists a decider R
for ETp. We construct a decider for Aty as follows:

On input (M, w):
1. Run R oninput ???

This is a reduction from Aty to Ey
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Emptiness testing for TMs

Ery = ((M) |MisaTMand L(M) = ¢} [Elifa

Theorem: Etp is undecidable

Proof: Suppose for contradiction that there exists a decider R
for Etnv. We construct a decider for Aty as follows:

On input (M, w):
1. Constructa TM N as follows:

2. Run R on input (N)

3.1fR

, accept. Otherwise, reject
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What do we want out of

machine N?

a) L(N)isemptyiff M
accepts w

b) L(N) is non-empty iff M
accepts w

c) L(M)isemptyiff N
accepts w

d) L(M) is non-empty iff N
accepts w

This is a reduction from Aty to Ey
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Emptiness testing for TMs

Erpy = {{M)|MisaTMand L(M) = @}
Theorem: Etp is undecidable

Proof: Suppose for contradiction that there exists a decider R
for ETy. We construct a decider for Aty as follows:

On input (M, w):
1. Constructa TM N as follows:
“On input x:
Run M on w and output the result.”
2. Run R on input (N)
3. If R rejects, accept. Otherwise, reject

This is a reduction from Aty to Ey
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Interlude: Formalizing Reductions
(Sipser 6.3)

Informally: A reduces to B if a decider for B can be used
to construct a decider for A

One way to formalize:

* An oracle for language B is a device that can answer
qguestions “Isw € B?”

* An oracle TM M?B is a TM that can query an oracle for B
in one computational step

A is Turing-reducible to B (written A <+ B) if thereis an
oracle TM M2 deciding A
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Equality Testing for TMs

EQrm = {{My, M3) |My, M, are TMs and L(M;) = L(M,)}
Theorem: EQTy is undecidable

Proof: Suppose for contradiction that there exists a decider R
for EQry. We construct a decider for ETy as follows:

On input (M):
1. Construct TMs Ny, N, as follows:
N]_ - N2 =

2. Run R on input (N, N,)
3. If R accepts, accept. Otherwise, reject.

This is a reduction from E1y to EQ1m
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Equality Testing for TMs e

o
What do we want out of the machines Ny, N, ? EIF,"@
c) LIM)=0Qiff Ny# N, d)L(M)=0@iff L(N;) # L(N,)

On input (M):
1. Construct TMs Ny, N, as follows:
N]_ - NZ =

2. Run R on input (Ny, N,)
3. If R accepts, accept. Otherwise, reject.

This is a reduction from E1y to EQ1m
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Equality Testing for TMs

EQrm = {{My, M3) |My, M, are TMs and L(M;) = L(M,)}
Theorem: EQTy is undecidable

Proof: Suppose for contradiction that there exists a decider R
for EQ1y. We construct a decider for Aty as follows:

On input (M):
1. Construct TMs Ny, N, as follows:
N]_ - N2 =

2. Run R on input (N, N,)
3. If R accepts, accept. Otherwise, reject.

This is a reduction from E1y to EQ1m
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Regular [anguage testing for TMs

REGty = {{M) |[M isa TM and L(M) is regular}
Theorem: RE Gty is undecidable

Proof: Suppose for contradiction that there exists a decider R
for REGTy. We construct a decider for Aty as follows:

On input (M, w):
1. Constructa TM N as follows:

2. Run R on input (N)
3. If R accepts, accept. Otherwise, reject

This is a reduction from Aty to REGy
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Regular [anguage testing for TMs

REGty = {{M) |[M isa TM and L(M) is regular}
Theorem: RE Gty is undecidable

Proof: Suppose for contradiction that there exists a decider R
for REGTy. We construct a decider for Aty as follows:

On input (M, w):
1. Constructa TM N as follows:
N =“Oninput x,
1.1f x € {0™"1™ | n = 0}, accept
2. Run TM M on input w

3. If M accepts, accept. Otherwise, reject.”
2. Run R on input (N)

3. If R accepts, accept. Otherwise, reject

This is a reduction from Aty to REGy
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Other undecidable
oroblems
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Problems in Language Theory

Apparent dichotomy:

* TMs seem to be able to
solve problems about the
power of weaker
computational models
(e.g., DFAS)

* TMs can’t solve problems EDFA ETM
about the power of TMs decidable undecidable
themselves

Question: Are there E

undecidable problems that ,QDFA EQ,TM

descriptions?
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Undecidability of mathematics [Sipser 6.2]

Peano arithmetic: Formalization of mathematical
statements about the natural numbers, using +,%X, <

Ex: “There exist infinitely many primes”

Theorem [Church, Turing]:

TPA = {{¢) | @ is a true statement in PA } is
undecidable

Proof skeleton:

11/3/2022 CS332 - Theory of Computation 20



Godel’s First Incompleteness Theorem [Sipser 6.2]

Theorem: There exists a true statement @ in Peano
arithmetic that is not provable

Proof idea:

Suppose for contradiction that every true statement is
provable. Then TPA = PPA where

PPA = { (@) | ¢ is a provable statement in PA }
Claim: PPA is Turing-recognizable
Construct a decider for TPA as follows:
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A simple undecidable problem
Post Correspondence Problem (PCP) [Sipser 5.2]:

Domino: aab] Top and bottom are strings.
Input: Collection of dominos.

il e a5

Match: List of some of the input dominos (repetitions
allowed) where top = bottom

2] ) o] el [

Problem: Does a match exist? This is undecidable
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Computation History Method

A sequence of configurations C,, ..., C, is an accepting
computation history for TM M on input w if

1. Cy is the start configuration gow; ... w,,
2. Every C;,q legally follows from C;
3. Cy is an accepting configuration

Reduction from the undecidable language Aty to a language
L using the following idea:

Given an input (M, w) to A1y, the ability to solve L enables
checking the existence of an accepting computation history for
M onw
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