Lecture 16:
 • More on Reductions

Reading:
 Sipser Ch 5.1

Mark Bun
November 3, 2022
Reductions
Reductions

A reduction from problem A to problem B is an algorithm for problem A which uses an algorithm for problem B as a subroutine.

If such a reduction exists, we say “A reduces to B”.

Positive uses: If A reduces to B and B is decidable, then A is also decidable.

Ex. E_{DFA} is decidable $\Rightarrow E_{Q_{DFA}}$ is decidable.

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable.

Ex. UD is undecidable $\Rightarrow A_{TM}$ is undecidable.
Two uses of reductions

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

Template for undecidability proof by reduction:

1. Suppose to the contrary that B is decidable
2. Using a decider for B as a subroutine, construct an algorithm deciding A
3. But A is undecidable. Contradiction!
Halting Problem

Computational problem: Given a program (TM) and input \(w \), does that program halt (either accept or reject) on input \(w \)?

Formulation as a language:

\[
HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM that halts on input } w \}
\]

Ex. \(M = \) “On input \(x \) (a natural number written in binary):

For each \(y = 1, 2, 3, \ldots : \)

If \(y^2 = x \), accept. Else, continue.”

Is \(\langle M, 101 \rangle \in HALT_{TM} \)?

a) Yes, because \(M \) accepts on input 101
b) Yes, because \(M \) rejects on input 101
c) No, because \(M \) rejects on input 101
d) No, because \(M \) loops on input 101
Halting Problem

Computational problem: Given a program (TM) and input w, does that program halt (either accept or reject) on input w?

Formulation as a language:

$$HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \}$$

Ex. $M =$ “On input x (a natural number in binary):
 For each $y = 1, 2, 3, ...$:
 If $y^2 = x$, accept. Else, continue.”

$M' =$ “On input x (a natural number in binary):
 For each $y = 1, 2, 3, ..., x$:
 If $y^2 = x$, accept. Else, continue.
 Reject.”
Halting Problem

\(\text{HALT}_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \} \)

Theorem: \(\text{HALT}_{TM} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(H \) for \(\text{HALT}_{TM} \). We construct a decider for \(V \) for \(A_{TM} \) as follows:

On input \(\langle M, w \rangle \):
1. Run \(H \) on input \(\langle M, w \rangle \)
2. If \(H \) rejects, reject
3. If \(H \) accepts, run \(M \) on \(w \)
4. If \(M \) accepts, accept
 Otherwise, reject.

This is a reduction from \(A_{TM} \) to \(\text{HALT}_{TM} \)
Halting Problem

Computational problem: Given a program (TM) and input w, does that program halt on input w?

• A central problem in formal verification

• Dealing with undecidability in practice:
 - Use heuristics that are correct on most real instances, but may be wrong or loop forever on others
 - Restrict to a “non-Turing-complete” subclass of programs for which halting is decidable
 - Use a programming language that lets a programmer specify hints (e.g., loop invariants) that can be compiled into a formal proof of halting
Emptiness testing for TMs

\[E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

Theorem: \(E_{TM} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(E_{TM} \). We construct a decider for \(A_{TM} \) as follows:

On input \(\langle M, w \rangle \):

1. Run \(R \) on input ???

This is a reduction from \(A_{TM} \) to \(E_{TM} \)
Emptiness testing for TMs

\[E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \]

Theorem: \(E_{\text{TM}} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(E_{\text{TM}} \). We construct a decider for \(A_{\text{TM}} \) as follows:

On input \(\langle M, w \rangle \):
1. Construct a TM \(N \) as follows:
 2. Run \(R \) on input \(\langle N \rangle \)
 3. If \(R \) accepts, accept. Otherwise, reject

What do we want out of machine \(N \)?
 a) \(L(N) \) is empty iff \(M \) accepts \(w \)
 b) \(L(N) \) is non-empty iff \(M \) accepts \(w \)
 c) \(L(M) \) is empty iff \(N \) accepts \(w \)
 d) \(L(M) \) is non-empty iff \(N \) accepts \(w \)

This is a reduction from \(A_{\text{TM}} \) to \(E_{\text{TM}} \)
Emptiness testing for TMs

\[E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

Theorem: \(E_{\text{TM}} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(E_{\text{TM}} \). We construct a decider for \(A_{\text{TM}} \) as follows:

On input \(\langle M, w \rangle \):

1. Construct a TM \(N \) as follows:

 “On input \(x \):

 Run \(M \) on \(w \) and output the result.”

2. Run \(R \) on input \(\langle N \rangle \)

3. If \(R \) rejects, accept. Otherwise, reject

This is a reduction from \(A_{\text{TM}} \) to \(E_{\text{TM}} \)
Interlude: Formalizing Reductions (Sipser 6.3)

Informally: A reduces to B if a decider for B can be used to construct a decider for A

One way to formalize:

- An *oracle* for language B is a device that can answer questions “Is $w \in B$?”
- An *oracle TM* M^B is a TM that can query an oracle for B in one computational step

A is **Turing-reducible** to B (written $A \leq_T B$) if there is an oracle TM M^B deciding A
Equality Testing for TMs

\[EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Theorem: \(EQ_{\text{TM}} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(EQ_{\text{TM}} \). We construct a decider for \(ETM \) as follows:

On input \(\langle M \rangle \):

1. Construct TMs \(N_1, N_2 \) as follows:
 \[N_1 = \quad N_2 = \]

2. Run \(R \) on input \(\langle N_1, N_2 \rangle \)

3. If \(R \) accepts, accept. Otherwise, reject.

This is a reduction from \(ETM \) to \(EQ_{\text{TM}} \)
Equality Testing for TMs

What do we want out of the machines N_1, N_2?

a) $L(M) = \emptyset$ iff $N_1 = N_2$

b) $L(M) = \emptyset$ iff $L(N_1) = L(N_2)$

c) $L(M) = \emptyset$ iff $N_1 \neq N_2$

d) $L(M) = \emptyset$ iff $L(N_1) \neq L(N_2)$

On input $\langle M \rangle$:

1. Construct TMs N_1, N_2 as follows:

 $N_1 = $

 $N_2 = $

2. Run R on input $\langle N_1, N_2 \rangle$

3. If R accepts, accept. Otherwise, reject.

This is a reduction from E_{TM} to EQ_{TM}
Equality Testing for TMs

\[EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Theorem: \(EQ_{TM} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(EQ_{TM} \). We construct a decider for \(A_{TM} \) as follows:

On input \(\langle M \rangle \):
1. Construct TMs \(N_1, N_2 \) as follows:
 \[N_1 = \quad N_2 = \]
2. Run \(R \) on input \(\langle N_1, N_2 \rangle \)
3. If \(R \) accepts, accept. Otherwise, reject.

This is a reduction from \(E_{TM} \) to \(EQ_{TM} \)
Regular language testing for TMs

\[REG_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \} \]

Theorem: \(REG_{TM} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(REG_{TM} \). We construct a decider for \(A_{TM} \) as follows:

On input \(\langle M, w \rangle \):

1. Construct a TM \(N \) as follows:
2. Run \(R \) on input \(\langle N \rangle \)
3. If \(R \) accepts, accept. Otherwise, reject

This is a reduction from \(A_{TM} \) to \(REG_{TM} \)
Regular language testing for TMs

\[REG_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular} \} \]

Theorem: \(REG_{TM} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(REG_{TM} \). We construct a decider for \(A_{TM} \) as follows:

On input \(\langle M, w \rangle \):
1. Construct a TM \(N \) as follows:
 \[N = \text{"On input } x, \text{ accept if } x \in \{0^n1^n \mid n \geq 0\}, \text{ accept. Otherwise, reject."} \]
2. Run \(R \) on input \(\langle N \rangle \)
3. If \(R \) accepts, \text{ accept. Otherwise, reject}

This is a reduction from \(A_{TM} \) to \(REG_{TM} \)
Other undecidable problems
Problems in Language Theory

Apparent dichotomy:
• TMs seem to be able to solve problems about the power of weaker computational models (e.g., DFAs)
• TMs can’t solve problems about the power of TMs themselves

Question: Are there undecidable problems that do not involve TM descriptions?

<table>
<thead>
<tr>
<th></th>
<th>(A_{\text{DFA}})</th>
<th>(A_{\text{TM}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>decidable</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(E_{\text{DFA}})</th>
<th>(E_{\text{TM}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>decidable</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(EQ_{\text{DFA}})</th>
<th>(EQ_{\text{TM}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>decidable</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Undecidability of mathematics [Sipser 6.2]

Peano arithmetic: Formalization of mathematical statements about the natural numbers, using $+, \times, \leq$

Ex: “There exist infinitely many primes”

Theorem [Church, Turing]:

$\text{TPA} = \{ \langle \varphi \rangle \mid \varphi \text{ is a true statement in } \text{PA} \}$ is undecidable

Proof skeleton:
Gödel’s First Incompleteness Theorem [Sipser 6.2]

Theorem: There exists a true statement \(\varphi \) in Peano arithmetic that is not provable

Proof idea:

Suppose for contradiction that every true statement is provable. Then \(\text{TPA} = \text{PPA} \) where

\[
\text{PPA} = \{ \langle \varphi \rangle \mid \varphi \text{ is a provable statement in PA} \}
\]

Claim: \(\text{PPA} \) is Turing-recognizable

Construct a decider for \(\text{TPA} \) as follows:
A simple undecidable problem

Post Correspondence Problem (PCP) [Sipser 5.2]:

Domino: \(\begin{bmatrix} a \\ ab \end{bmatrix} \). Top and bottom are strings.

Input: Collection of dominos.

\[
\begin{bmatrix} aa \\ aba \end{bmatrix}, \begin{bmatrix} ab \\ aba \end{bmatrix}, \begin{bmatrix} ba \\ aa \end{bmatrix}, \begin{bmatrix} abab \\ b \end{bmatrix}
\]

Match: List of some of the input dominos (repetitions allowed) where top = bottom

\[
\begin{bmatrix} ab \\ aba \end{bmatrix}, \begin{bmatrix} aa \\ aba \end{bmatrix}, \begin{bmatrix} ba \\ aa \end{bmatrix}, \begin{bmatrix} aa \\ aba \end{bmatrix}, \begin{bmatrix} abab \\ b \end{bmatrix}
\]

Problem: Does a match exist? This is undecidable
Computation History Method

A sequence of configurations C_0, \ldots, C_ℓ is an accepting computation history for TM M on input w if

1. C_0 is the start configuration $q_0 w_1 \ldots w_n$
2. Every C_{i+1} legally follows from C_i
3. C_ℓ is an accepting configuration

Reduction from the undecidable language A_{TM} to a language L using the following idea:

Given an input $\langle M, w \rangle$ to A_{TM}, the ability to solve L enables checking the existence of an accepting computation history for M on w