BU CS 332 – Theory of Computation

https://forms.gle/qHbdz9X5A4MyzTUs5

Lecture 18:

Mapping Reductions

Reading:

Sipser Ch 5.3

Mark Bun November 15, 2022 HW 8 due Tuckday 11/22

Reductions

A reduction from problem A to problem B is an algorithm for problem A which uses an algorithm for problem B as a subroutine

If such a reduction exists, we say "A reduces to B"

Positive uses: If A reduces to B and B is decidable, then A is also decidable

Ex. $E_{\rm DFA}$ is decidable $\Rightarrow EQ_{\rm DFA}$ is decidable

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

Ex. $E_{\rm TM}$ is undecidable $\Rightarrow EQ_{\rm TM}$ is undecidable

Warning ATM = 3 (M, W) TM M accepts w3

What's wrong with the following "proof"?

Bogus "Theorem": A_{TM} is not Turing-recognizable

Bogus "Proof": Let R be an alleged recognizer for A_{TM} . We construct a recognizer S for unrecognizable language A_{TM} :

TM 5'. On input $\langle M, w \rangle$: Problem. Elen it R recogniter Am, S doesn't recessarily Rignite AIm.

- 1. Run R on input $\langle M, w \rangle_{\mathcal{L}_{R}}$
- 2. If R accepts, reject. Otherwise, accept.

If
$$\langle M, W \rangle \in \overline{A}_{1M}$$
 when M loops on input W
 $\longrightarrow \mathbb{R}$ (ould loop on $\langle M, W \rangle \longrightarrow \mathbb{R}$ (ould loop on $W \longrightarrow \mathbb{R}$

This sure looks like a reduction from A_{TM} to A_{TM}

Mapping Reductions: Motivation

- 1. How do we formalize the notion of a reduction?
- 2. How do we use reductions to show that languages are unrecognizable?
- 3. How do we protect ourselves from accidentally "proving" bogus statements about recognizability?

Computable Functions

Definition:

A function $f: \Sigma^* \to \Sigma^*$ is computable if there is a TM M which, given as input any $w \in \Sigma^*$, halts with only f(w) on its tape. ("Outputs f(w)")

Computable Functions

Definition:

A function $f: \Sigma^* \to \Sigma^*$ is computable if there is a TM M which, given as input any $w \in \Sigma^*$, halts with only f(w) on its tape. ("Outputs f(w)")

Example 1:
$$f(w) = sort(w)$$
 HW5 Problem 3

Example 2:
$$f(\langle x, y \rangle) = x + y$$

Computable Functions

Definition:

A function $f: \Sigma^* \to \Sigma^*$ is computable if there is a TM M which, given as input any $w \in \Sigma^*$, halts with only f(w) on its tape. ("Outputs f(w)")

Example 3: $f(\langle M, w \rangle) = \langle M' \rangle$ where M is a TM, w is a string, and M' is a TM that ignores its input and simulates running M on w

```
TM remaking f.

On input < M, w):

1. (Onstruct TM M':

"On input X

Tynore x. Pun M on w. If it accepts, accept, if rejects, reject"

2. Ontput < M')

11/15/2022

CS332-Theory of Computation

7
```

Mapping Reductions

Definition:

Let $A, B \subseteq \Sigma^*$ be languages. We say A is mapping reducible to B, written

$$A \leq_{\mathrm{m}} B$$

if there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all strings $w \in \Sigma^*$, we have $w \in A \iff f(w) \in B$

11/15/2022

CS332 - Theory of Computation

Mapping Reductions

Definition:

Language A is mapping reducible to language B, written $A \leq_m B$

if there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all strings $w \in \Sigma^*$, we have $w \in A \iff f(w) \in B$

If $A \leq_m B$, which of the following is true?

a)
$$\bar{A} \leq_{\mathrm{m}} B$$

b)
$$A \leq_{\mathrm{m}} \bar{B}$$

$$(c)\bar{A} \leq_{\rm m} \bar{B}$$

d)
$$\bar{B} \leq_{\mathrm{m}} \bar{A}$$

Decidability

Theorem: If $A \leq_m B$ and B is decidable, then A is also decidable

Proof: Let M be a decider for B and let $f: \Sigma^* \to \Sigma^*$ be a mapping reduction from A to B. Construct a decider N for A as follows: (overtress:

On input w:

1) If weA => f(w) EB [by defn of mapping reduction]

M accepts f(w) [M decides B] => N alsots 1 1. Compute f(w)

2) If w &A => f(w) & B [by defin of mapping reduction]

=> M Horacks f(w) [m decides 3] Run M on input f(w)

If M accepts, accept. If it rejects, reject.

Undecidability

Theorem: If $A \leq_m B$ and B is decidable, then A is also decidable

Corollary: If $A \leq_{\mathbf{m}} B$ and A is undecidable, then B is also undecidable

Old Proof: Equality Testing for TMs

 $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Theorem: EQ_{TM} is undecidable $E_{TM} = \xi \langle M \rangle | M \approx \pi M$

Proof: Suppose for contradiction that there exists a decider R for $EQ_{\rm TM}$. We construct a decider for $E_{\rm TM}$ as follows:

On input $\langle M \rangle$:

1. Construct TMs M_1 , M_2 as follows:

$$M_1 = M$$

$$M_2$$
 = "On input x ,
1. Ignore x and reject"

- 2. Run R on input $\langle M_1, M_2 \rangle$
- 3. If *R* accepts, accept. Otherwise, reject.

This is a reduction from $E_{\rm TM}$ to $EQ_{\rm TM}$

New Proof: Equality Testing for TMs

 $EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Theorem: $E_{TM} \leq_m EQ_{TM}$ hence EQ_{TM} is undecidable

Proof: The following TM N computes the reduction f:

If $(M) \in E_{TM} \implies L(M) = \emptyset \implies L(M_1) = L(M_2) = \emptyset \implies CM_1, M_2 \in E_{TM}$ If < m> & E => L(m) \$ 0 => L(m) \$ L(m) = \$ => (m, m) \$ Eam On input $\langle M \rangle$:

1. Construct TMs M_1 , M_2 as follows:

$$M_1 = M$$
 L(m)= L(m)

$$M_2$$
 = "On input x ,

1. Ignore x and reject"

2. Output $\langle M_1, M_2 \rangle$

Claim f is a mapping reduction from Em to Eam ie. 1) < m> = ETW -> f(ZM>) & EQ m 2) (M) & ETM => f(CM) & EQTM

Mapping Reductions: Recognizability

Theorem: If $A \leq_m B$ and B is recognizable, then A is also recognizable

Proof: Let M be a recognizer for B and let $f: \Sigma^* \to \Sigma^*$ be a mapping reduction from A to B. Construct a recognizer N for A as follows: (ometine 55.

On input w:

1. Compute f(w) \longrightarrow $f(w) \notin S$ 1. Compute f(w) \longrightarrow M does not accept

=> M alcests => N alcests V

1) If weA => frw) & B

- 2. Run M on input $f(w) \Rightarrow N$ does not accept
- 3. If M accepts, accept. Otherwise, reject.

Unrecognizability

Theorem: If $A \leq_m B$ and B is recognizable, then A is also recognizable

Corollary: If $A \leq_{\mathrm{m}} B$ and A is unrecognizable, then B is also unrecognizable

Corollary: If $\overline{A_{TM}} \leq_m B$, then B is unrecognizable

Recognizability and A_{TM}

Let L be a language. Which of the following is true?

- a)/ If $L \leq_{\mathrm{m}} A_{\mathrm{TM}}$, then L is recognizable
- b) If $A_{TM} \leq_{m} L$, then L is recognizable
- \cap If L is recognizable, then $L \leq_{\mathrm{m}} A_{\mathrm{TM}}$
- d) If L is recognizable, then $A_{TM} \leq_{m} L$

Knowi Am= 3 (m, w) TM M accept why is recognitable

Theorem: L is recognizable if and only if $L \leq_m A_{TM}$

Recognizability and A_{TM} Theorem: L is recognizable if and only if $L \leq_m A_{TM}$ Theorem: L is recognizable if and only if $L \leq_m A_{TM}$ Theorem: L is recognizable if and only if $L \leq_m A_{TM}$ Theorem: L is recognizable if and only if $L \leq_m A_{TM}$ Theorem: L is recognizable if and only if $L \leq_m A_{TM}$ Theorem: L is recognizable if and only if $L \leq_m A_{TM}$ Theorem: L is recognizable if and only if $L \leq_m A_{TM}$ Theorem: L is recognizable if and only if $L \leq_m A_{TM}$
Proof: (unou Am & recognizable under marring reductions
By The about recognitability under maging aductions, LEM Arm => L recognitable recognitable
Let L be recognizable. Goal: Constact mapping reduction from L to Am.
Let M be a TM recognizion L
The Collainy TM computes a marping reduction from L to Ami:
(smectross: 1) Output (M,J) (smectross: 1) If we L=) M acepts w (N,J) C ATM (2) If we L=) M des not acept w => (M,J) & ATM

Example: Another reduction to EQ_{TM}

 $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Theorem: $A_{TM} \leq_m EQ_{TM}$ $A_{TM} = 3 (M, w) TM M accepts why$

Proof: The following TM N computes the reduction f:

What should the inputs and outputs to f be?

- a) f should take as input a pair $\langle M_1, M_2 \rangle$ and output a pair $\langle M, w \rangle$
- b) f should take as input a pair $\langle M, w \rangle$ and output a pair $\langle M_1, M_2 \rangle$
- c) f should take as input a pair $\langle M_1, M_2 \rangle$ and either accept or reject
- d) f should take as input a pair $\langle M, w \rangle$ and either accept or reject

Example: Another reduction to EQ_{TM}

 $EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Theorem: $A_{TM} \leq_{m} EQ_{TM}$

Proof: The following TM computes the reduction f:

If
$$(M, M) \in A_{TM} \implies f(M, M) = (M, M) \in E_{Q,TM}$$

If $(M, M) \in A_{TM} \implies f(M, M) = (M, M) \in E_{Q,TM}$

On input (M, W) :

1 Construct TMs M_1 M_2 as follows:

1. Construct TMs M_1 , M_2 as follows:

$$M_1$$
 = "On input x ,

$$M_2$$
 = "On input x ,

Run M on w. If

acept, acept . If reject,

reject

2. Output $\langle M_1, M_2 \rangle$

Consequences of $A_{TM} \leq_{\rm m} EQ_{TM}$

1. Since $A_{\rm TM}$ is undecidable, $EQ_{\rm TM}$ is also undecidable

2. $A_{\text{TM}} \leq_{\text{m}} EQ_{\text{TM}}$ implies $\overline{A_{\text{TM}}} \leq_{\text{m}} \overline{EQ_{\text{TM}}}$ Since $\overline{A_{\text{TM}}}$ is unrecognizable, $\overline{EQ_{\text{TM}}}$ is unrecognizable

EQ_{TM} itself is also unrecognizable

 $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Theorem: $A_{TM} \leq_m EQ_{TM}$ hence EQ_{TM} is unrecognizable

Proof: The following TM computes the reduction:

On input $\langle M, w \rangle$:

1. Construct TMs M_1 , M_2 as follows:

$$M_1$$
 = "On input x ,

 M_2 = "On input x,

1. Ignore x

1. Ignore x and reject"

- 2. Run M on input w
- 3. If *M* accepts, accept. Otherwise, reject."
- 2. Output $\langle M_1, M_2 \rangle$