Lecture 18:
 • Mapping Reductions

Reading:
Sipser Ch 5.3

Mark Bun
November 15, 2022
Reductions

A **reduction** from problem A to problem B is an algorithm for problem A which uses an algorithm for problem B as a subroutine.

If such a reduction exists, we say “A reduces to B”

Positive uses: If A reduces to B and B is decidable, then A is also decidable.

Ex. E_{DFA} is decidable $\Rightarrow E_{Q_{\text{DFA}}}$ is decidable

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable.

Ex. E_{TM} is undecidable $\Rightarrow E_{Q_{\text{TM}}}$ is undecidable
What's wrong with the following "proof"?

Bogus "Theorem": \(A_{TM} \) is not Turing-recognizable

Bogus "Proof": Let \(R \) be an alleged recognizer for \(A_{TM} \). We construct a recognizer \(S \) for unrecognizable language \(\overline{A_{TM}} \):

On input \(\langle M, w \rangle \):
1. Run \(R \) on input \(\langle M, w \rangle \)
2. If \(R \) accepts, reject. Otherwise, accept.

If \(\langle M, w \rangle \in \overline{A_{TM}} \) when \(M \) loops on input \(w \) => \(R \) could loop on \(\langle M, w \rangle \) => \(S \) could loop on \(w \) => \(\langle M, w \rangle \notin \langle S \rangle \)

This sure looks like a reduction from \(\overline{A_{TM}} \) to \(A_{TM} \)
Mapping Reductions: Motivation

1. How do we formalize the notion of a reduction?
2. How do we use reductions to show that languages are unrecognizable?
3. How do we protect ourselves from accidentally “proving” bogus statements about recognizability?
Computable Functions

Definition:

A function $f: \Sigma^* \rightarrow \Sigma^*$ is **computable** if there is a TM M which, given as input any $w \in \Sigma^*$, halts with only $f(w)$ on its tape. ("Outputs $f(w)$")
Computable Functions

Definition:
A function \(f : \Sigma^* \rightarrow \Sigma^* \) is computable if there is a TM \(M \) which, given as input any \(w \in \Sigma^* \), halts with only \(f(w) \) on its tape. ("Outputs \(f(w) \)")

Example 1: \(f(w) = \text{sort}(w) \) HW5 Problem 3

Example 2: \(f((x, y)) = x + y \)

Input: \(x_1, x_2, \ldots, x_n \# y_1, y_2, \ldots, y_m \)

Output: \(z_1, z_2, z_3, \ldots, z_m \)

where \(z = x + y \)
Computable Functions

Definition:

A function \(f : \Sigma^* \rightarrow \Sigma^* \) is **computable** if there is a TM \(M \) which, given as input any \(w \in \Sigma^* \), halts with only \(f(w) \) on its tape. ("Outputs \(f(w) \)"")

Example 3: \(f(\langle M, w \rangle) = \langle M' \rangle \) where \(M \) is a TM, \(w \) is a string, and \(M' \) is a TM that ignores its input and simulates running \(M \) on \(w \)

1. **Construct** TM \(M' \):
 - On input \(x \): Ignore \(x \), run \(M \) on \(w \). If it accepts, accept; if rejects, reject

2. **Output** \(\langle M' \rangle \)

11/15/2022

CS332 - Theory of Computation
Mapping Reductions

Definition:
Let $A, B \subseteq \Sigma^*$ be languages. We say A is mapping reducible to B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \rightarrow \Sigma^*$ such that for all strings $w \in \Sigma^*$, we have $w \in A \iff f(w) \in B$.
Mapping Reductions

Definition:
Language A is mapping reducible to language B, written
$A \leq_m B$
if there is a computable function $f : \Sigma^* \to \Sigma^*$ such that for all strings $w \in \Sigma^*$, we have $w \in A \iff f(w) \in B$

If $A \leq_m B$, which of the following is true?

a) $\overline{A} \leq_m B$
b) $A \leq_m \overline{B}$
c) $\overline{A} \leq_m \overline{B}$
d) $\overline{B} \leq_m \overline{A}$
Decidability

Theorem: If \(A \leq_m B \) and \(B \) is decidable, then \(A \) is also decidable.

Proof: Let \(M \) be a decider for \(B \) and let \(f: \Sigma^* \rightarrow \Sigma^* \) be a mapping reduction from \(A \) to \(B \). Construct a decider \(N \) for \(A \) as follows:

On input \(w \):

1. Compute \(f(w) \)
2. Run \(M \) on input \(f(w) \)
3. If \(M \) accepts, accept. If it rejects, reject.

\[
\begin{align*}
\text{Correctness:} \\
1) & \text{ If } w \in A \implies f(w) \in B \quad [\text{by defn of mapping reduction}] \\
\implies & M \text{ accepts } f(w) \quad [M \text{ decides } B] \\
\implies & N \text{ accepts } \checkmark \\
2) & \text{ If } w \notin A \implies f(w) \notin B \quad [\text{by defn of mapping reduction}] \\
\implies & M \text{ rejects } f(w) \quad [M \text{ decides } B] \\
\implies & N \text{ rejects } \checkmark
\end{align*}
\]
Undecidability

Theorem: If $A \leq_m B$ and B is decidable, then A is also decidable.

Corollary: If $A \leq_m B$ and A is undecidable, then B is also undecidable.

(Contrapositive of Thm)
Old Proof: Equality Testing for TMs

\[EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Theorem: \(EQ_{TM} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(EQ_{TM} \). We construct a decider for \(E_{TM} \) as follows:

On input \(\langle M \rangle \):

1. Construct TMs \(M_1, M_2 \) as follows:
 \[M_1 = M \]
 \[M_2 = \text{"On input } x,\]
 \[1. \text{ Ignore } x \text{ and reject"} \]

2. Run \(R \) on input \(\langle M_1, M_2 \rangle \)
3. If \(R \) accepts, accept. Otherwise, reject.

This is a reduction from \(E_{TM} \) to \(EQ_{TM} \)
New Proof: Equality Testing for TMs

\[EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Theorem: \(E_{TM} \leq_{m} EQ_{TM} \) hence \(EQ_{TM} \) is undecidable

Proof: The following TM \(N \) computes the reduction \(f: \)

\[\begin{align*}
\text{If } \langle M \rangle \in E_{TM} & \Rightarrow L(M) = \emptyset \quad \Rightarrow L(M_1) = L(M_2) = \emptyset \quad \Rightarrow \langle M_1, M_2 \rangle \in EQ_{TM} \\
\text{If } \langle M \rangle \notin E_{TM} & \Rightarrow L(M) \neq \emptyset \quad \Rightarrow L(M_1) \neq L(M_2) = \emptyset \quad \Rightarrow \langle M_1, M_2 \rangle \notin EQ_{TM}
\end{align*} \]

On input \(\langle M \rangle \):

1. Construct TMs \(M_1, M_2 \) as follows:
 \[L(M_1) = \emptyset \]
 \[M_1 = M \quad L(M_1) = L(M) \quad M_2 = \text{"On input } x, 1. \text{ Ignore } x \text{ and reject"} \]

2. Output \(\langle M_1, M_2 \rangle \)

Claim: \(f \) is a mapping reduction from \(E_{TM} \) to \(EQ_{TM} \)

\[\begin{align*}
1) \quad & \langle M \rangle \in E_{TM} \Rightarrow f(\langle M \rangle) \in EQ_{TM} \\
2) \quad & \langle M \rangle \notin E_{TM} \Rightarrow f(\langle M \rangle) \notin EQ_{TM}
\end{align*} \]
Mapping Reductions: Recognizability

Theorem: If $A \leq_m B$ and B is recognizable, then A is also recognizable.

Proof: Let M be a recognizer for B and let $f : \Sigma^* \rightarrow \Sigma^*$ be a mapping reduction from A to B. Construct a recognizer N for A as follows:

1. **Correctness:**
 1) If $w \in A \Rightarrow f(w) \in B$

 $\Rightarrow M$ accepts $\Rightarrow N$ accepts \checkmark

2) If $w \notin A \Rightarrow f(w) \notin B$

 $\Rightarrow M$ does not accept \checkmark

 $\Rightarrow N$ does not accept \checkmark

On input w:

1. Compute $f(w)$
2. Run M on input $f(w)$
3. If M accepts, accept. Otherwise, reject.
Unrecognizability

Theorem: If \(A \leq_m B \) and \(B \) is recognizable, then \(A \) is also recognizable.

Corollary: If \(A \leq_m B \) and \(A \) is unrecognizable, then \(B \) is also unrecognizable.

Corollary: If \(\overline{A_{TM}} \leq_m B \), then \(B \) is unrecognizable.

Corollary: If \(A_{TM} \leq_m \overline{B} \), then \(B \) is unrecognizable.

Why? \(A_{TM} \leq_m \overline{B} \iff \overline{A_{TM}} \leq_m B \)
Recognizability and A_{TM}

Let L be a language. Which of the following is true?

a) If $L \leq_m A_{TM}$, then L is recognizable

b) If $A_{TM} \leq_m L$, then L is recognizable

\[\text{c) If } L \text{ is recognizable, then } L \leq_m A_{TM}\]

\[\text{d) If } L \text{ is recognizable, then } A_{TM} \leq_m L\]

\[\text{Lemma: } A_{TM} = \{ \langle m, w \rangle \mid \text{TM } m \text{ accepts } w \text{ is recognizable}\]

\[\text{Theorem: } L \text{ is recognizable if and only if } L \leq_m A_{TM}\]
Recognizability and A_{TM}

Theorem: L is recognizable if and only if $L \leq_m A_{TM}$

Proof:

\implies Let L be recognizable. Goal: Construct mapping reduction from L to A_{TM}.

Let M be a TM recognizing L.

The following TM computes a mapping reduction from L to A_{TM}:

- **Input:** w
- **Output:** $\langle M, w \rangle$

Correctness:
1) If $w \in L \implies \langle M, w \rangle \in A_{TM}$
2) If $w \notin L \implies M$ does not accept w
Example: Another reduction to EQ_{TM}

$EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Theorem: $A_{TM} \leq_m EQ_{TM}$

Proof: The following TM N computes the reduction f:

What should the inputs and outputs to f be?

a) f should take as input a pair $\langle M_1, M_2 \rangle$ and output a pair $\langle M, w \rangle$

b) f should take as input a pair $\langle M, w \rangle$ and output a pair $\langle M_1, M_2 \rangle$

c) f should take as input a pair $\langle M_1, M_2 \rangle$ and either accept or reject

d) f should take as input a pair $\langle M, w \rangle$ and either accept or reject
Example: Another reduction to EQ_{TM}

$$EQ_{TM} = \{\langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$$

Theorem: $A_{TM} \leq_{m} EQ_{TM}$

Proof: The following TM computes the reduction f:

- If $\langle M, w \rangle \in A_{TM} \Rightarrow f(\langle M, w \rangle) = \langle M_1, M_2 \rangle \in EQ_{TM}$
- If $\langle M, w \rangle \notin A_{TM} \Rightarrow f(\langle M, w \rangle) = \langle M_1, M_2 \rangle \notin EQ_{TM}$

On input $\langle M, w \rangle$:

1. **Construct TMs M_1, M_2 as follows:**
 - $M_1 = "\text{On input } x, \text{Accept}"$
 - $M_2 = "\text{On input } x, \text{Run } M \text{ on } w. \text{ If accepted, accept. If rejected, reject}"$

2. Output $\langle M_1, M_2 \rangle$
Consequences of $A_{TM} \leq_m EQ_{TM}$

1. Since A_{TM} is undecidable, EQ_{TM} is also undecidable

2. $A_{TM} \leq_m EQ_{TM}$ implies $\overline{A_{TM}} \leq_m EQ_{TM}$, Since $\overline{A_{TM}}$ is unrecognizable, $\overline{EQ_{TM}}$ is unrecognizable
Theorem: EQ_{TM} itself is also unrecognizable

$EQ_{TM} = \{\langle M_1, M_2 \rangle | M_1, M_2$ are TMs and $L(M_1) = L(M_2)\}$

Proof: The following TM computes the reduction:

On input $\langle M, w \rangle$:

1. Construct TMs M_1, M_2 as follows:
 - $M_1 = \text{"On input } x,\text{ accept."}$
 1. Ignore x
 2. Run M on input w
 3. If M accepts, accept. Otherwise, reject.
 - $M_2 = \text{"On input } x,\text{ reject.}"$
 1. Ignore x and reject.

2. Output $\langle M_1, M_2 \rangle$