Lecture 18:
• Mapping Reductions

Reading:
Sipser Ch 5.3

Mark Bun
November 15, 2022
Reductions

A reduction from problem A to problem B is an algorithm for problem A which uses an algorithm for problem B as a subroutine.

If such a reduction exists, we say “A reduces to B”

Positive uses: If A reduces to B and B is decidable, then A is also decidable.

Ex. E_{DFA} is decidable $\Rightarrow E_{EQ_{DFA}}$ is decidable

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable.

Ex. E_{TM} is undecidable $\Rightarrow E_{EQ_{TM}}$ is undecidable
What’s wrong with the following “proof”?

Bogus “Theorem”: A_{TM} is not Turing-recognizable

Bogus “Proof”: Let R be an alleged recognizer for A_{TM}. We construct a recognizer S for unrecognizable language A_{TM}:

On input $⟨M, w⟩$:
1. Run R on input $⟨M, w⟩$
2. If R accepts, reject. Otherwise, accept.

This sure looks like a reduction from $\overline{A_{TM}}$ to A_{TM}
Mapping Reductions: Motivation

1. How do we formalize the notion of a reduction?
2. How do we use reductions to show that languages are unrecognizable?
3. How do we protect ourselves from accidentally “proving” bogus statements about recognizability?
Computable Functions

Definition:

A function \(f : \Sigma^* \rightarrow \Sigma^* \) is **computable** if there is a TM \(M \) which, given as input any \(w \in \Sigma^* \), halts with only \(f(w) \) on its tape. ("Outputs \(f(w) \)")
Computable Functions

Definition:
A function $f : \Sigma^* \rightarrow \Sigma^*$ is computable if there is a TM M which, given as input any $w \in \Sigma^*$, halts with only $f(w)$ on its tape. ("Outputs $f(w)$")

Example 1: $f(w) = \text{sort}(w)$, HW5 Problem 3

Example 2: $f(\langle x, y \rangle) = x + y$
Computable Functions

Definition:
A function \(f : \Sigma^* \rightarrow \Sigma^* \) is \textbf{computable} if there is a TM \(M \) which, given as input any \(w \in \Sigma^* \), halts with only \(f(w) \) on its tape. ("Outputs \(f(w) \")")

Example 3: \(f(\langle M, w \rangle) = \langle M' \rangle \) where \(M \) is a TM, \(w \) is a string, and \(M' \) is a TM that ignores its input and simulates running \(M \) on \(w \)
Mapping Reductions

Definition:
Let $A, B \subseteq \Sigma^*$ be languages. We say A is mapping reducible to B, written

$$A \leq_m B$$

if there is a computable function $f: \Sigma^* \rightarrow \Sigma^*$ such that for all strings $w \in \Sigma^*$, we have $w \in A \iff f(w) \in B$
Mapping Reductions

Definition:

Language \(A \) is mapping reducible to language \(B \), written \(A \leq_m B \), if there is a computable function \(f: \Sigma^* \rightarrow \Sigma^* \) such that for all strings \(w \in \Sigma^* \), we have \(w \in A \iff f(w) \in B \).

If \(A \leq_m B \), which of the following is true?

a) \(\overline{A} \leq_m B \)

b) \(A \leq_m \overline{B} \)

c) \(\overline{A} \leq_m \overline{B} \)

d) \(\overline{B} \leq_m \overline{A} \)
Decidability

Theorem: If $A \leq_m B$ and B is decidable, then A is also decidable

Proof: Let M be a decider for B and let $f: \Sigma^* \rightarrow \Sigma^*$ be a mapping reduction from A to B. Construct a decider N for A as follows:

On input w:
1. Compute $f(w)$
2. Run M on input $f(w)$
3. If M accepts, accept. If it rejects, reject.
Undecidability

Theorem: If $A \leq_m B$ and B is decidable, then A is also decidable.

Corollary: If $A \leq_m B$ and A is undecidable, then B is also undecidable.
Old Proof: Equality Testing for TMs

\[EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Theorem: \(EQ_{TM} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(EQ_{TM} \). We construct a decider for \(E_{TM} \) as follows:

On input \(\langle M \rangle \):

1. Construct TMs \(M_1, M_2 \) as follows:

 \[
 M_1 = M \\
 M_2 = "\text{On input } x, \\
 1. \text{Ignore } x \text{ and reject}"

2. Run \(R \) on input \(\langle M_1, M_2 \rangle \)
3. If \(R \) accepts, accept. Otherwise, reject.

This is a reduction from \(E_{TM} \) to \(EQ_{TM} \)
New Proof: Equality Testing for TMs

\[\mathcal{EQ}_\text{TM} = \{\langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Theorem: \(E_{\text{TM}} \leq_m \mathcal{EQ}_\text{TM} \) hence \(\mathcal{EQ}_\text{TM} \) is undecidable

Proof: The following TM \(N \) computes the reduction \(f \):

On input \(\langle M \rangle \):

1. Construct TMs \(M_1, M_2 \) as follows:
 - \(M_1 = M \)
 - \(M_2 = \text{"On input } x, \begin{cases}
 1. \text{Ignore } x \text{ and reject}
 \end{cases} \) \)

2. Output \(\langle M_1, M_2 \rangle \)
Mapping Reductions: Recognizability

Theorem: If \(A \leq_m B \) and \(B \) is recognizable, then \(A \) is also recognizable.

Proof: Let \(M \) be a recognizer for \(B \) and let \(f : \Sigma^* \rightarrow \Sigma^* \) be a mapping reduction from \(A \) to \(B \). Construct a recognizer \(N \) for \(A \) as follows:

1. Compute \(f(w) \)
2. Run \(M \) on input \(f(w) \)
3. If \(M \) accepts, accept. Otherwise, reject.
Unrecognizability

Theorem: If $A \leq_{m} B$ and B is recognizable, then A is also recognizable

Corollary: If $A \leq_{m} B$ and A is unrecognizable, then B is also unrecognizable

Corollary: If $\overline{A_{TM}} \leq_{m} B$, then B is unrecognizable
Let L be a language. Which of the following is true?

a) If $L \leq_m A_{TM}$, then L is recognizable
b) If $A_{TM} \leq_m L$, then L is recognizable
c) If L is recognizable, then $L \leq_m A_{TM}$
d) If L is recognizable, then $A_{TM} \leq_m L$

Theorem: L is recognizable *if and only if* $L \leq_m A_{TM}$
Recognizability and A_{TM}

Theorem: L is recognizable *if and only if* $L \leq_m A_{TM}$

Proof:
Example: Another reduction to EQ_{TM}

$$EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$$

Theorem: $A_{\text{TM}} \leq_m EQ_{\text{TM}}$

Proof: The following TM N computes the reduction f:

What should the inputs and outputs to f be?

a) f should take as input a pair $\langle M_1, M_2 \rangle$ and output a pair $\langle M, w \rangle$

b) f should take as input a pair $\langle M, w \rangle$ and output a pair $\langle M_1, M_2 \rangle$

c) f should take as input a pair $\langle M_1, M_2 \rangle$ and either accept or reject

d) f should take as input a pair $\langle M, w \rangle$ and either accept or reject
Example: Another reduction to EQ_{TM}

$EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Theorem: $A_{TM} \leq_m EQ_{TM}$

Proof: The following TM computes the reduction f:

On input $\langle M, w \rangle$:

1. Construct TMs M_1, M_2 as follows:
 \[M_1 = "\text{On input } x, \quad M_2 = "\text{On input } x, \]

2. Output $\langle M_1, M_2 \rangle$
Consequences of $A_{TM} \leq_m EQ_{TM}$

1. Since A_{TM} is undecidable, EQ_{TM} is also undecidable

2. $A_{TM} \leq_m EQ_{TM}$ implies $\overline{A_{TM}} \leq_m \overline{EQ_{TM}}$
 Since $\overline{A_{TM}}$ is unrecognizable, $\overline{EQ_{TM}}$ is unrecognizable
EQ_{TM} itself is also unrecognizable

$$EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$$

Theorem: $\overline{A_{TM}} \leq_m EQ_{TM}$ hence EQ_{TM} is unrecognizable

Proof: The following TM computes the reduction:

On input $\langle M, w \rangle$:

1. Construct TMs M_1, M_2 as follows:

 $M_1 = \text{“On input } x, \text{ 1. Ignore } x \text{ 2. Run } M \text{ on input } w \text{ 3. If } M \text{ accepts, accept. \Otherwise, reject.”}$

 $M_2 = \text{“On input } x, \text{ 1. Ignore } x \text{ and reject”}$

2. Output $\langle M_1, M_2 \rangle$