
BU CS 332 – Theory of Computation

Lecture 19:
• Asymptotic Notation
• Time/Space Complexity
• Complexity Class P

Reading:
Sipser Ch 7.1, 7.2, 8.0

Mark Bun
November 17, 2022

https://forms.gle/XhdePDBNMYMw3xyCA

https://forms.gle/XhdePDBNMYMw3xyCA

Where we are in CS 332

11/17/2022 CS332 - Theory of Computation 2

Automata Computability Complexity

Previous unit: Computability theory
What kinds of problems can / can’t computers solve?

Final unit: Complexity theory
What kinds of problems can / can’t computers solve under
constraints on their computational resources?

Time and space complexity
Today: Start answering the basic questions

1. How do we measure complexity? (as in CS 330)

2. Asymptotic notation (as in CS 330)

3. How robust is the TM model when we care about
measuring complexity?

4. How do we mathematically capture our intuitive
notion of “efficient algorithms”?

11/17/2022 CS332 - Theory of Computation 3

Time and space complexity
Time complexity of a TM = Running time of an algorithm
= Max number of steps as a function of input length 𝑛𝑛

Space complexity of a TM = Memory usage of algorithm
= Max number of tape cells as a function of input length 𝑛𝑛

11/17/2022 CS332 - Theory of Computation 4

Example
In how much time/space can a basic single-tape TM decide
𝐴𝐴 = 0𝑚𝑚1𝑚𝑚 𝑚𝑚 ≥ 0}?

Let’s analyze one particular TM 𝑀𝑀:

𝑀𝑀 = “On input 𝑤𝑤:
1. Scan input and reject if not of the form 0∗1∗

2. While input contains both 0’s and 1’s:
Cross off one 0 and one 1

3. Accept if no 0’s and no 1’s left. Otherwise, reject.”

11/17/2022 CS332 - Theory of Computation 5

Example
𝑀𝑀 = “On input 𝑤𝑤:

1. Scan input and reject if not of the form 0∗1∗
2. While input contains both 0’s and 1’s:

Cross off one 0 and one 1
3. Accept if no 0’s and no 1’s left. Otherwise, reject.”

What is the time complexity of 𝑀𝑀?
a) 𝑂𝑂(1) [constant time]
b) 𝑂𝑂(𝑛𝑛) [linear time]
c) 𝑂𝑂 𝑛𝑛2 [quadratic time]
d) 𝑂𝑂(𝑛𝑛3) [cubic time]

What is the space complexity of 𝑀𝑀?

11/17/2022 CS332 - Theory of Computation 6

Review of asymptotic notation
𝑂𝑂-notation (upper bounds)

𝑓𝑓 𝑛𝑛 = 𝑂𝑂(𝑔𝑔 𝑛𝑛) means:
There exist constants 𝑐𝑐 > 0,𝑛𝑛0 > 0 such that
𝑓𝑓 𝑛𝑛 ≤ 𝑐𝑐𝑔𝑔 𝑛𝑛 for every 𝑛𝑛 ≥ 𝑛𝑛0

Example: 2𝑛𝑛2 + 12 = 𝑂𝑂(𝑛𝑛3) (𝑐𝑐 = 3, 𝑛𝑛0 = 4)

11/17/2022 CS332 - Theory of Computation 7

Properties of asymptotic notation:
Transitive:
𝑓𝑓 𝑛𝑛 = 𝑂𝑂(𝑔𝑔 𝑛𝑛) and 𝑔𝑔 𝑛𝑛 = 𝑂𝑂(ℎ 𝑛𝑛) means 𝑓𝑓 𝑛𝑛 = 𝑂𝑂(ℎ 𝑛𝑛)

Not reflexive:
𝑓𝑓 𝑛𝑛 = 𝑂𝑂(𝑔𝑔 𝑛𝑛) does not mean 𝑔𝑔 𝑛𝑛 = 𝑂𝑂(𝑓𝑓 𝑛𝑛)

Example: 𝑓𝑓 𝑛𝑛 = 2𝑛𝑛2, 𝑔𝑔 𝑛𝑛 = 𝑛𝑛3

Alternative (better) notation: 𝑓𝑓 𝑛𝑛 ∈ 𝑂𝑂(𝑔𝑔 𝑛𝑛)

11/17/2022 CS332 - Theory of Computation 8

Examples

11/17/2022 CS332 - Theory of Computation 9

• 106 𝑛𝑛3 + 2𝑛𝑛2 − 𝑛𝑛 + 10 =

• 𝑛𝑛 + log𝑛𝑛 =

• 𝑛𝑛 (log𝑛𝑛 + 𝑛𝑛) =

Little-oh

11/17/2022 CS332 - Theory of Computation 10

If 𝑂𝑂-notation is like ≤, then 𝑜𝑜-notation is like <

Example: 2𝑛𝑛2 + 12 = 𝑜𝑜(𝑛𝑛3) (𝑛𝑛0 = max{4/𝑐𝑐, 3})

𝑓𝑓 𝑛𝑛 = 𝑜𝑜(𝑔𝑔 𝑛𝑛) means:
For every constant 𝑐𝑐 > 0, there exists 𝑛𝑛0 > 0 such that

𝑓𝑓 𝑛𝑛 ≤ 𝑐𝑐𝑔𝑔 𝑛𝑛 for every 𝑛𝑛 ≥ 𝑛𝑛0

True facts about asymptotic expressions
Which of the following statements is true about the
function 𝑓𝑓 𝑛𝑛 = 2𝑛𝑛?

a) 𝑓𝑓 𝑛𝑛 = 𝑂𝑂 3𝑛𝑛

b) 𝑓𝑓 𝑛𝑛 = 𝑜𝑜 3𝑛𝑛

c) 𝑓𝑓 𝑛𝑛 = 𝑂𝑂 𝑛𝑛2

d) 𝑛𝑛2 = 𝑂𝑂(𝑓𝑓 𝑛𝑛)

11/17/2022 CS332 - Theory of Computation 11

Asymptotic notation within expressions
Asymptotic notation within an expression is shorthand for
“there exists a function satisfying the statement”

Examples:
• 𝑛𝑛𝑂𝑂(1)

• 𝑛𝑛2 + 𝑂𝑂 𝑛𝑛

• 1 + 𝑜𝑜 1 𝑛𝑛

11/17/2022 CS332 - Theory of Computation 12

FAABs: Frequently asked asymptotic bounds

11/17/2022 CS332 - Theory of Computation 13

• Polynomials. 𝑎𝑎0 + 𝑎𝑎1𝑛𝑛 + … + 𝑎𝑎𝑑𝑑𝑛𝑛𝑑𝑑 is 𝑂𝑂(𝑛𝑛𝑑𝑑) if 𝑎𝑎𝑑𝑑 > 0
• Logarithms. log 𝑎𝑎 𝑛𝑛 = 𝑂𝑂(log 𝑏𝑏 𝑛𝑛) for all constants 𝑎𝑎, 𝑏𝑏 > 0

For every 𝑐𝑐 > 0, log𝑛𝑛 = 𝑜𝑜(𝑛𝑛𝑐𝑐)

• Exponentials. For all 𝑏𝑏 > 1 and all 𝑑𝑑 > 0, 𝑛𝑛𝑑𝑑 = 𝑜𝑜(𝑏𝑏𝑛𝑛)

• Factorial. 𝑛𝑛! = 𝑛𝑛 𝑛𝑛 − 1 ⋯1
By Stirling’s formula,

𝑛𝑛! = 2𝜋𝜋𝑛𝑛
𝑛𝑛
𝑒𝑒

𝑛𝑛
1 + 𝑜𝑜 1 = 2𝑂𝑂(𝑛𝑛 log 𝑛𝑛)

Time and Space Complexity

11/17/2022 CS332 - Theory of Computation 14

Running time analysis
Time complexity of a TM (algorithm) = maximum number of
steps it takes on a worst-case input

Formally: Let 𝑓𝑓 ∶ ℕ → ℕ. A TM 𝑀𝑀 runs in time 𝑓𝑓(𝑛𝑛) if on
every input 𝑤𝑤 ∈ Σ𝑛𝑛, 𝑀𝑀 halts on 𝑤𝑤 within at most 𝑓𝑓(𝑛𝑛) steps

- Focus on worst-case running time: Upper bound of 𝑓𝑓 𝑛𝑛
must hold for all inputs of length 𝑛𝑛

- Exact running time 𝑓𝑓 𝑛𝑛 does not translate well between
computational models / real computers. Instead focus on
asymptotic complexity.

11/17/2022 CS332 - Theory of Computation 15

Time complexity classes

Let 𝑓𝑓 ∶ ℕ → ℕ
TIME(𝑓𝑓(𝑛𝑛)) is a set (“class”) of languages:

A language 𝐴𝐴 ∈ TIME(𝑓𝑓(𝑛𝑛)) if there exists a basic single-
tape (deterministic) TM 𝑀𝑀 that
1) Decides 𝐴𝐴, and
2) Runs in time 𝑂𝑂(𝑓𝑓(𝑛𝑛))

11/17/2022 CS332 - Theory of Computation 16

Time class containment
If 𝑓𝑓 𝑛𝑛 = 𝑂𝑂(𝑔𝑔 𝑛𝑛), then which of the following
statements is always true?

a) TIME 𝑓𝑓 𝑛𝑛 ⊆ TIME 𝑔𝑔 𝑛𝑛
b) TIME 𝑔𝑔 𝑛𝑛 ⊆ TIME 𝑓𝑓 𝑛𝑛
c) TIME 𝑓𝑓 𝑛𝑛 = TIME 𝑔𝑔 𝑛𝑛
d) None of the above

11/17/2022 CS332 - Theory of Computation 17

Example
𝐴𝐴 = 0𝑚𝑚1𝑚𝑚 𝑚𝑚 ≥ 0}
𝑀𝑀 = “On input 𝑤𝑤:

1. Scan input and reject if not of the form 0∗1∗

2. While input contains both 0’s and 1’s:
Cross off one 0 and one 1

3. Accept if no 0’s and no 1’s left. Otherwise, reject.”

• 𝑀𝑀 runs in time 𝑂𝑂 𝑛𝑛2

• Is there a faster algorithm?

11/17/2022 CS332 - Theory of Computation 18

Example
𝐴𝐴 = 0𝑚𝑚1𝑚𝑚 𝑚𝑚 ≥ 0}
𝑀𝑀′ = “On input 𝑤𝑤:

1. Scan input and reject if not of the form 0∗1∗

2. While input contains both 0’s and 1’s:
• Reject if the total number of 0’s and 1’s remaining is odd
• Cross off every other 0 and every other 1

3. Accept if no 0’s and no 1’s left. Otherwise, reject.”

• Running time of 𝑀𝑀′:

• Is there a faster algorithm?

11/17/2022 CS332 - Theory of Computation 19

Example
Running time of 𝑀𝑀′: 𝑂𝑂 𝑛𝑛 log𝑛𝑛

Theorem (Sipser, Problem 7.49): If 𝐿𝐿 can be decided in
𝑜𝑜 𝑛𝑛 log𝑛𝑛 time on a 1-tape TM, then 𝐿𝐿 is regular

11/17/2022 CS332 - Theory of Computation 20

Does it matter that we’re using the 1-tape
model for this result?
It matters: 2-tape TMs can decide 𝐴𝐴 faster

𝑀𝑀′′ = “On input 𝑤𝑤:
1. Scan input and reject if not of the form 0∗1∗

2. Copy 0’s to tape 2
3. Scan tape 1. For each 1 read, cross off a 0 on tape 2
4. If 0’s on tape 2 finish at same time as 1’s on tape 1, accept.

Otherwise, reject.”

Analysis: 𝐴𝐴 is decided in time 𝑂𝑂(𝑛𝑛) on a 2-tape TM
Moral of the story (part 1): Unlike decidability, time
complexity depends on the TM model

11/17/2022 CS332 - Theory of Computation 21

How much does the model matter?
Theorem: Let 𝑡𝑡 𝑛𝑛 ≥ 𝑛𝑛 be a function. Every multi-tape
TM running in time 𝑡𝑡 𝑛𝑛 has an equivalent single-tape TM
running in time 𝑂𝑂(𝑡𝑡 𝑛𝑛 2)

Proof idea:
We already saw how to simulate a multi-tape TM with a
single-tape TM
Need a runtime analysis of this construction

Moral of the story (part 2): Time complexity doesn’t
depend too much on the TM model (as long as it’s
deterministic, sequential)

11/17/2022 CS332 - Theory of Computation 22

Extended Church-Turing Thesis
Every “reasonable” model of computation can be
simulated by a basic, single-tape TM with only a
polynomial slowdown.

E.g., doubly infinite TMs, multi-tape TMs, RAM TMs
Does not include nondeterministic TMs (not reasonable)

Possible counterexamples? Randomized computation,
parallel computation, DNA computing, quantum
computation

11/17/2022 CS332 - Theory of Computation 23

Complexity class P
Definition: P is the class of languages decidable in
polynomial time on a basic single-tape (deterministic) TM

P = ⋃𝑘𝑘=1
∞ TIME(𝑛𝑛𝑘𝑘)

• Class doesn’t change if we substitute in another
reasonable deterministic model (Extended Church-Turing)

• Cobham-Edmonds Thesis: Roughly captures class of
problems that are feasible to solve on computers

11/17/2022 CS332 - Theory of Computation 24

A note about encodings
We’ll still use the notation for “any reasonable”
encoding of the input to a TM…but now we have to be
more careful about what we mean by “reasonable”

How long is the encoding of a 𝑉𝑉-vertex, 𝐸𝐸-edge graph…
… as an adjacency matrix?
… as an adjacency list?

How long is the encoding of a natural number 𝑘𝑘
… in binary?
… in decimal?
… in unary?

11/17/2022 CS332 - Theory of Computation 25

Describing and analyzing polynomial-time
algorithms

• Due to Extended Church-Turing Thesis, we can still use
high-level descriptions on multi-tape machines

• Polynomial-time is robust under composition: poly(𝑛𝑛)
executions of poly(𝑛𝑛)-time subroutines run on poly(𝑛𝑛)-
size inputs gives an algorithm running in poly(𝑛𝑛) time.
⇒ Can freely use algorithms we’ve seen before as
subroutines if we’ve analyzed their runtime

• Need to be careful about size of inputs! (Assume inputs
represented in binary unless otherwise stated.)

11/17/2022 CS332 - Theory of Computation 26

Space complexity
Space complexity of a TM (algorithm) = maximum number of
tape cells it uses on a worst-case input

Formally: Let 𝑓𝑓 ∶ ℕ → ℕ. A TM 𝑀𝑀 runs in space 𝑓𝑓(𝑛𝑛) if on
every input 𝑤𝑤 ∈ Σ𝑛𝑛, 𝑀𝑀 halts on 𝑤𝑤 using at most 𝑓𝑓(𝑛𝑛) cells

A language 𝐴𝐴 ∈ SPACE(𝑓𝑓(𝑛𝑛)) if there exists a basic single-
tape (deterministic) TM 𝑀𝑀 that
1) Decides 𝐴𝐴, and
2) Runs in time 𝑂𝑂(𝑓𝑓(𝑛𝑛))

11/17/2022 CS332 - Theory of Computation 27

Back to our examples
𝐴𝐴 = 0𝑚𝑚1𝑚𝑚 𝑚𝑚 ≥ 0}

Theorem: Let 𝑠𝑠 𝑛𝑛 ≥ 𝑛𝑛 be a function. Every multi-tape
TM running in space 𝑠𝑠 𝑛𝑛 has an equivalent single-tape
TM running in space 𝑂𝑂(𝑠𝑠(𝑛𝑛))

11/17/2022 CS332 - Theory of Computation 28

	BU CS 332 – Theory of Computation
	Where we are in CS 332
	Time and space complexity
	Time and space complexity
	Example
	Example
	Review of asymptotic notation
	Properties of asymptotic notation:
	Examples
	Little-oh
	True facts about asymptotic expressions
	Asymptotic notation within expressions
	FAABs: Frequently asked asymptotic bounds
	Time and Space Complexity
	Running time analysis
	Time complexity classes
	Time class containment
	Example
	Example
	Example
	Does it matter that we’re using the 1-tape model for this result?
	How much does the model matter?
	Extended Church-Turing Thesis
	Complexity class P
	A note about encodings
	Describing and analyzing polynomial-time algorithms
	Space complexity
	Back to our examples

