BU CS 332 —Theory of Computation

https://forms.gle/zp6turkFdYAilJzub9

Lecture 22: ,
Reading:

* NP Sipser Ch 7.3-7.4
* NP-Completeness

Mark Bun
December 1, 2022

https://forms.gle/zp6turkFdYAiJzub9

Nondeterministic time and NP
letf: N—-> N
ANTM M runs in time f(n) if on every input w € ",

M halts on w within at most f(n) steps on every
computational branch

NTIME(f (n)) is a class (i.e., set) of languages:
A language A € NTIME(f (n)) if there exists an NTM M that

1) Decides A4, and
2) Runsin time O(f (n))

Definition: NP is the class of languages decidable in
polynomial time on a nondeterministic TM

NP = Uy, NTIME(n®)

12/1/2022 CS332 - Theory of Computation

Speeding things up with nondeterminism

TRIANGLE = {{G)|digraph G contains a triangle}
Deterministic algorithm:

Nondeterministic algorithm:

12/1/2022 CS332 - Theory of Computation

Hamiltonian Path

HAMPATH = {(G, s, t) |G is a directed graph and there

is a path from s to t that passes
through every vertex exactly once}

12/1/2022 CS332 - Theory of Computation 4

HAMPATH € NP

The following nondeterministic algorithm decides
HAMPATH in polynomial time:

On input (G, s, t): (Vertices of G are numbers 1, ..., k)
1. Nondeterministically guess a sequence
C1, Co, ..., Cx Of numbers 1, ..., k

2. Check that ¢4, ¢y, ..., Cx is @ permutation: Every
number 1, ..., k appears exactly once

3. Check that ¢; = s, ¢, = t, and there is an edge
from every c¢; to ¢; 41

4. Accept if all checks pass, otherwise, reject.

An alternative characterization of NP

“Languages with polynomial-time verifiers”
How did we design an NTM for HAMPATH?

* Given a candidate path, it is easy (poly-time) to check
whether this path is a Hamiltonian path

* We designed a poly-time NTM by nondeterministically
guessing this path and then checking it

* Lots of problems have this structure (CLIQUE, 3-COLOR,
COMPOSITE,...). They might be hard to solve, but a
candidate solution is easy to check.

An alternative characterization of NP

“Languages with polynomial-time verifiers”

A verifier for a language L is a deterministic algorithm V
such that w € L iff there exists a string ¢ such that
V({w, c)) accepts

Running time of a verifier is only measured in terms of |w/|

I is a polynomial-time verifier if it runs in time polynomial
in |w| on every input (w, c)

(Without loss of generality, |c| is polynomial in |w|, i.e.,
lc| = O(Jw|¥) for some constant k)

12/1/2022 CS332 - Theory of Computation 7

HAMPATH has a polynomial-time verifier

Certificate c:
Verifier V/:
Oninput (G, s, t; c): (Vertices of G are numbers 1, ..., k)

1. Check that ¢4, ¢5, ..., ¢k is a permutation: Every
number 1, ..., k appears exactly once

2. Check that ¢c; = s, ¢, = t, and there is an edge
from every c¢; to ¢;41

3. Accept if all checks pass, otherwise, reject.

12/1/2022 CS332 - Theory of Computation 8

NP is the class of languages with polynomial-
time verifiers

Theorem: A language L € NP iff there is a polynomial-
time verifier for L

12/1/2022 CS332 - Theory of Computation

Alternative proof of NP € EXP

One can prove NP € EXP as follows. Let V' be a verifier for a
Ian uage L running in time T (n). We can construct a

O(T(M)) time algorithm for L as follows.

a) Oninput(w,c), runV on (w, c) and output the result

b) Oninputw, runV on all possible {w, c¢), where c is a
certificate. Accept if any run accepts.

c) Oninputw, runV on all possible {(w, c), where c is a
certificate of length at most T(|Jw|). Accept if any run
accepts.

d) Oninput w, runV on all possible {x, c), where x is a string
of length |w| and c is a certificate of length at most
T (|w|). Accept if any run accepts.

NP is the class of languages with polynomial-
time verifiers

Theorem: A language L € NP iff there is a polynomial-
time verifier for L

Proof: «< Let L have a time-T (n) verifier V({w, c))

Idea: Design NTM N for L that nondeterministically
guesses a certificate

12/1/2022 CS332 - Theory of Computation 11

NP is the class of languages with polynomial-
time verifiers

= Let L be decided by an NTM N running in time T'(n)
and making up to b nondeterministic choices in each step

ldea: Design verifier IV for L where certificate is sequence
of “good” nondeterministic choices

12/1/2022 CS332 - Theory of Computation 12

WARNING: Don’t mix-and-match the NTM and

verifier interpretations of NP
To show a language L is in NP, do exactly one:

1) Exhibit a poly-time NTM for L
N =“Oninput w:
<Do some nondeterministic stuff>...”
OR

2) Exhibit a poly-time (deterministic) verifier for L

IV = “On input w and certificate c:
<Do some deterministic stuff>...”

12/1/2022 CS332 - Theory of Computation 13

Examples of NP languages: SAT

“Is there an assignment to the variables in a logical
formula that make it evaluate to true?”

 Boolean variable: Variable that can take on the value
true/false (encoded as 0/1)

* Boolean operations: A (AND), v (OR), = (NOT)

* Boolean formula: Expression made of Boolean variables
and operations. Ex: (x; VX3) A x5

* An assignment of Os and 1s to the variables satisfies a
formula @ if it makes the formula evaluate to 1

* A formula ¢ is satisfiable if there exists an assighment
that satisfies it

12/1/2022 CS332 - Theory of Computation 14

Examples of NP languages: SAT

Ex: (x4 VX3) A X3 Satisfiable?

Ex: (x1 VXy) AX{ A Xy Satisfiable?

SAT = {{(p)|@ is a satisfiable formula}
Claim: SAT € NP

12/1/2022 CS332 - Theory of Computation 15

Examples of NP languages: Traveling

Salesperson

“Given a list of cities and distances between them, is
there a ‘short’ tour of all of the cities?”

More precisely: Given
* A number of cities m

e A function D:{1, ..., m} # - N giving the distance
between each pair of cities

e A distance bound B

TSP = {(m, D, B)|3 a tour visiting every city
with length < B}

12/1/2022 CS332 - Theory of Computation 16

P vs. NP

Question: Does P = NP?
Philosophically: Can every problem with an efficiently
verifiable solution also be solved efficiently?

Millennium Problems

Yang-Mlills and Mass Gap
Experiment and computer simulations suggest the existence of a “mass gap" in the solution to the quantum versions of the Yang-Mills equations. But
e progf of this property iz known.

A central problem in mathematics woime:

The prime number thearem determines the average distribution of the primes. The Rismann hypothesis tells us about the deviation from the

Zverage Formulated in Rismann's 1559 paper, it assarts that all the | buicus' zeros of the zets funct] numbsrs vith resl part 102,

P vs NP Problem

(]
IFitis masy to check that 3 solution to 3 problem is correct, is it sls easy o sclhve the problem? Thisis the essence of the Pvs NP question. Typical of
the NP isthat of ti h Problem: given M cities to visit, how can one do this without visiting a city twice? If you giveme a

sclution, | can sasily checkthat it is correct. But | cannot so sasily find 2 selution.

Navier-Stokes Equation
This is the equation which governs the flow of fluids such as water and air. However, there is no proo for the mest basic guestions one can ask: do.
solutions exist, and are they unigue? Why ask for a procf? Because a proof gi ituds, buralzoL i

Hodge Conjecture
The answer to this conjecture determines how much of the topology
further slgebraic equations. The Hodge canjectune is known in certain special cases, 2, when the sok

the solution set of 2 system of algebraic equations can be defined in terms of
n 2t has dimension less than four. Butin

dimension four it is unknown.

EXP EXP Poincaré Conjecture

In 15904 the French mathematician Henri Poincaré asked if the thy ional sphere is ch a5 the unique simply connacted three
manifeid. This question, the Poincaré conjecturs, was 8 special case of Thurston's geometrization conjecture. Perelman's proof tells us that every
three manifold is built from a set of standard pieces, eachwith one of sight well-understood geometries.

Birch and Swinnerton-Dyer Conjecture

Supported by much exper idence, this eonjecture relates the number of points on an elliptic curve mod p 1o the rank of the group of

rational points. Elliptic curves, defined by cubic equations in two varisbles, are fundamental mathematical objects that arise in many areas: Wilss

proaf of the Fermat Conjecture, factorization of numbersinto primes, and crypeography, to name three.

If P=NP If P=NP

12/1/2022 CS332 - Theory of Computation 17

A world where P = NP

* Many important decision problems can be solved in
polynomial time (HAMPATH, SAT, TSP, etc.)

* Many search problems can be solved in polynomial time
(e.g., given a natural number, find a prime factorization)

* Many optimization problems can be solved in polynomial
time (e.g., find the lowest energy conformation of a
protein)

L

A world where P = NP

* Secure cryptography becomes impossible

An NP search problem: Given a ciphertext ¢, find a plaintext
m and encryption key k that would encrypt to ¢

* Al / machine learning become easy: Identifying a consistent
classification rule is an NP search problem

* Finding mathematical proofs becomes easy: NP search
problem: Given a mathematical statement S and length
bound k, is there a proof of S with length at most k?

General consensus: P # NP

12/1/2022 CS332 - Theory of Computation 19

NP-Completeness

12/1/2022 (S332 - Theory of Computation

Understanding the P vs. NP question

Most believe P #= NP, but we are very far from proving it

Question 1: How can studying specific computational
problems help us get a handle on resolving P vs. NP?

Question 2: What would P # NP allow us to conclude
about specific problems we care about?

ldea: Identify the “hardest” problems in NP
Languages L € NP such that LeP iff P=NP

12/1/2022 CS332 - Theory of Computation 21

Recall: Mapping reducibility

Definition:

A function f: X" = X" is computable if thereisa TM M
which, given as input any w € X%, halts with only f(w) on
Its tape.

Definition:

Language A is mapping reducible to language B, written
A<, B

if there is a computable function f: X* = X" such that for
all stringsw € X", wehavew €4 < f(w) €B

12/1/2022 CS332 - Theory of Computation 22

Polynomial-time reducibility

Definition:

A function f: X* = X" is polynomial-time computable if there
is a polynomial-time TM M which, given as input any w € X7,
halts with only f(w) on its tape.

Definition:

Language A is polynomial-time reducible to language B,

written
A Sp B

if there is a polynomial-time computable function f:X* - X~
such that for all stringsw € £*, wehavew € A & f(w) € B

12/1/2022 CS332 - Theory of Computation 23

Implications of poly-time reducibility

Theorem: If A4 <p B and B € P,then A € P

Proof: Let M decide B in poly time, and let f be a poly-

time reduction from A to B. The following TM decides A
in poly time:

12/1/2022 CS332 - Theory of Computation 24

s NP closed under poly-time reductions?

If A <p B and B is in NP, does that mean
Ais alsoin NP?

a) Yes, the same proof works using NTMs instead of TMs

b) No, because the new machine is an NTM instead of a
deterministic TM

c) No, because the new NTM may not run in polynomial time

d) No, because the new NTM may accept some inputs it
should reject

e) No, because the new NTM may reject some inputs it
should accept

NP-completeness

Definition: A language B is NP-complete if
1) B € NP, and

2) B is NP-hard: Every language A € NP is poly-time
reducible to B, i.e., A <, B

12/1/2022 CS332 - Theory of Computation 26

Implications of NP-completeness

Theorem: Suppose B is NP-complete.
Then B € P iff P = NP
Proof:

12/1/2022 CS332 - Theory of Computation

27

Implications of NP-completeness

Theorem: Suppose B is NP-complete.
Then B € P iff P = NP
Consequences of B being NP-complete:

1) If you want to show P = NP, you just have to show
BeEP

2) If you want to show P # NP, you just have to show
B &P

3) If you already believe P # NP, then you believe B & P

	BU CS 332 – Theory of Computation
	Nondeterministic time and NP
	Speeding things up with nondeterminism
	Hamiltonian Path
	𝐻𝐴𝑀𝑃𝐴𝑇𝐻∈NP
	An alternative characterization of NP
	An alternative characterization of NP
	𝐻𝐴𝑀𝑃𝐴𝑇𝐻 has a polynomial-time verifier
	NP is the class of languages with polynomial-time verifiers
	Alternative proof of NP⊆EXP
	NP is the class of languages with polynomial-time verifiers
	NP is the class of languages with polynomial-time verifiers
	WARNING: Don’t mix-and-match the NTM and verifier interpretations of NP
	Examples of NP languages: SAT
	Examples of NP languages: SAT
	Examples of NP languages: Traveling Salesperson
	P vs. NP
	A world where P=NP
	A world where P=NP
	NP-Completeness
	Understanding the P vs. NP question
	Recall: Mapping reducibility
	Polynomial-time reducibility
	Implications of poly-time reducibility
	Is NP closed under poly-time reductions?
	NP-completeness
	Implications of NP-completeness
	Implications of NP-completeness

