Lecture 23:

- NP-completeness

Reading:
Sipser Ch 7.4-7.5

Mark Bun
December 6, 2022
Last time: Two equivalent definitions of \textbf{NP}

1) \textbf{NP} is the class of languages decidable in polynomial time on a nondeterministic TM

$$\text{NP} = \bigcup_{k=1}^{\infty} \text{NTIME}(n^k)$$

2) A polynomial-time verifier for a language L is a deterministic $\text{poly}(|w|)$-time algorithm V such that

$w \in L \iff$ there exists a certificate c

such that $V(\langle w, c \rangle)$ accepts

Theorem: A language $L \in \textbf{NP}$ iff there is a polynomial-time verifier for L
Examples of NP languages

• Hamiltonian path
 Given a graph G and vertices s, t, does G contain a Hamiltonian path from s to t?

• Clique
 Given a graph G and natural number k, does G contain a clique of size k?

• Subset Sum
 Given a list of natural numbers x_1, \ldots, x_k, t is there a subset of the numbers x_1, \ldots, x_k that sum up to exactly t?

• Boolean satisfiability (SAT)
 Given a Boolean formula, is there a satisfying assignment?

• Vertex Cover
 Given a graph G and natural number k, does G contain a vertex cover of size k?

• Traveling Salesperson
NP-Completeness
Understanding the P vs. NP question

Most believe $P \neq NP$, but we are very far from proving it.

Question 1: How can studying specific computational problems help us get a handle on resolving P vs. NP?

Question 2: What would $P \neq NP$ allow us to conclude about specific problems we care about?

Idea: Identify the “hardest” problems in NP

Languages $L \in NP$ such that $L \in P$ iff $P = NP$
Recall: Mapping reducibility

Definition:
A function \(f : \Sigma^* \to \Sigma^* \) is \textit{computable} if there is a TM \(M \) which, given as input any \(w \in \Sigma^* \), halts with only \(f(w) \) on its tape.

Definition:
Language \(A \) is \textit{mapping reducible} to language \(B \), written \(A \leq_m B \), if there is a computable function \(f : \Sigma^* \to \Sigma^* \) such that for all strings \(w \in \Sigma^* \), we have \(w \in A \iff f(w) \in B \)
Polynomial-time reducibility

Definition:
A function $f: \Sigma^* \rightarrow \Sigma^*$ is **polynomial-time computable** if there is a **polynomial-time** TM M which, given as input any $w \in \Sigma^*$, halts with only $f(w)$ on its tape.

Definition:
Language A is **polynomial-time reducible** to language B, written

$$A \leq_p B$$

if there is a **polynomial-time** computable function $f: \Sigma^* \rightarrow \Sigma^*$ such that for all strings $w \in \Sigma^*$, we have $w \in A \iff f(w) \in B$
Implications of poly-time reducibility

Theorem: If $A \leq_p B$ and $B \in P$, then $A \in P$

Proof: Let M decide B in poly time, and let f be a poly-time reduction from A to B. The following TM decides A in poly time:
Thm. If \(A \leq_p B \) and \(B \in \mathsf{P} \), then \(A \in \mathsf{P} \).

Proof. Let \(M \) decide \(B \) in polynomial time.

Consider the following \(M' \) and \(N \):

On input \(w \):
1) Compute \(f(w) \).
2) Run \(M \) on input \(f(w) \). If accepts, accept. If rejects, reject.

Correctness:

\[
W \in A \iff f(w) \in B \quad \text{(def. of poly-time reduction)}
\]

\[
\iff M \text{ accepts } f(w) \quad \text{[} M \text{ decides } B \text{]}.
\]

\[
\iff N \text{ accepts } w \quad \text{[by construction of alg. } N]\text{].}
\]

Runtime:

\[
\text{computing } f(w) \text{ takes } \text{poly}(1\|w) \text{ time by def. of poly-time reduction.}
\]

\[
\text{Length } f(w) = \text{poly}(1\|w)\text{.}
\]

\[
\Rightarrow M(f(w)) \text{ takes } \text{poly}(\text{poly}(1\|w)) \text{ time, which is polynomial.}
\]
Is **NP** closed under poly-time reductions?

If \(A \leq_p B \) and \(B \) is in NP, does that mean \(A \) is also in NP?

Analogous to how

\[
\text{if } A \in \text{NP} \text{ and } A \text{ is recognizable, then it is recognizable.}
\]

a) Yes, the same proof works using NTMs instead of TMs

b) No, because the new machine is an NTM instead of a deterministic TM

c) No, because the new NTM may not run in polynomial time

d) No, because the new NTM may accept some inputs it should reject

e) No, because the new NTM may reject some inputs it should accept
NP-completeness

Definition: A language B is NP-complete if

1) $B \in \text{NP}$, and

2) B is NP-hard: Every language $A \in \text{NP}$ is poly-time reducible to B, i.e., $A \leq_p B$
Implications of NP-completeness

Theorem: Suppose \(B \) is NP-complete.

Then \(B \in P \) iff \(P = NP \)

Proof:

\[\leq \]

wts: if \(P = NP \) then \(B \in \mathcal{P} \)

why? \(B \text{ NP-complete} \rightarrow B \in \mathcal{NP} = \mathcal{P} \)

\[\Rightarrow \]

wts: if \(B \in \mathcal{P} \) then \(P = NP \)

Let \(A \in \mathcal{NP} \) be any language.

Since \(B \) is NP-hard, \(A \in \mathcal{P} \Rightarrow B \in \mathcal{P} \)

\[\Rightarrow \]

By Theorem from slide 8, \(A \in \mathcal{P} \)

\[\Rightarrow \mathcal{NP} \subseteq \mathcal{P} \]. Already knew \(\mathcal{P} \subseteq \mathcal{NP} \) \(\Rightarrow P = NP \).
Implications of NP-completeness

Theorem: Suppose B is NP-complete.
Then $B \in P$ iff $P = NP$

Consequences of B being NP-complete:

1) If you want to prove $P = NP$, you just have to prove $B \in P$
2) If you want to prove $P \neq NP$, a good candidate is to try to show that $B \notin P$
3) If you believe $P \neq NP$, then you also believe $B \notin P$
Cook-Levin Theorem and NP-Complete Problems
Do NP-complete problems exist?

Theorem: \(TMSAT = \{ \langle N, w, 1^t \rangle \mid \text{NTM } N \text{ accepts input } w \text{ within } t \text{ steps} \} \) is NP-complete

Proof sketch:

1) \(TMSAT \in \text{NP} \):
 Certificate = \(t \)

 nondeterministic guesses made by \(N \), verifier checks that \(N \) accepts \(w \) within \(t \) steps under those guesses.

2) \(TMSAT \) is NP-hard: Let \(L \in \text{NP} \) be decided by NTM \(N \) running in time \(T(n) \).

The following poly-time TM shows \(L \leq_p TMSAT \):

“On input \(w \) (an instance of \(L \)):

 Output \(\langle N, w, 1^{T(|w|)} \rangle \)”
Cook-Levin Theorem

Theorem: SAT (Boolean satisfiability) is NP-complete

“Proof”: Already know $SAT \in NP$. (Much) harder direction: Need to show every problem in NP reduces to SAT
New NP-complete problems from old

Lemma: If $A \leq_p B$ and $B \leq_p C$, then $A \leq_p C$

(poly-time reducibility is **transitive**)

Theorem: If $B \leq_p C$ for some NP-hard language B, then C is also NP-hard

Corollary: If $C \in \text{NP}$ and $B \leq_p C$ for some NP-complete language B, then C is also NP-complete
New NP-complete problems from old

All problems below are NP-complete and hence poly-time reduce to one another!

by definition of NP-completeness
3SAT (3-CNF Satisfiability)

Definitions:

- A literal either a variable or its negation: x_5, $\overline{x_7}$
- A clause is a disjunction (OR) of literals: Ex. $x_5 \lor \overline{x_7} \lor x_2$
- A 3-CNF is a conjunction (AND) of clauses where each clause contains exactly 3 literals

 Ex. $C_1 \land C_2 \land \ldots \land C_m =$

 $= (x_5 \lor \overline{x_7} \lor x_2) \land (\overline{x_3} \lor x_4 \lor x_1) \land \ldots \land (x_1 \lor x_1 \lor x_1)$

 $3SAT = \{\langle \varphi \rangle | \varphi \text{ is a satisfiable 3-CNF}\}$
Theorem: 3SAT is NP-complete

Proof idea: 1) 3SAT is in NP (why?)
2) Show that SAT \leq_p 3SAT

Your classmate suggests the following reduction from SAT to 3SAT: “On input \(\varphi \), a 3-CNF formula (an instance of 3SAT), output \(\varphi \), which is already an instance of SAT.” Is this reduction correct?

a) Yes, this is a poly-time reduction from SAT to 3SAT
b) No, because \(\varphi \) is not an instance of the SAT problem
c) No, the reduction does not run in poly time
 -
d) No, this is a reduction from 3SAT to SAT; it goes in the wrong direction
3SAT is NP-complete

Theorem: **3SAT** is NP-complete

Proof idea: 1) **3SAT** is in NP (why?)

2) Show that **SAT** \(\leq_p **3SAT**

Idea of reduction: Give a poly-time algorithm converting an arbitrary formula \(\varphi \) into a 3CNF \(\psi \) such that \(\varphi \) is satisfiable iff \(\psi \) is satisfiable

Formal reduction not given here
Illustration of conversion from φ to ψ

Step 1: Push all negations in φ to variable level.

```
\begin{align*}
\varphi & : (a = x_1 \lor \overline{x_2}) \land (b = x_3 \land \overline{x_1}) \land (c = a \lor b) \\
& \land (c = 1)
\end{align*}
```

Step 2: (must each $(a = x \lor y)$ into a 3-clause)

Because every function $f: \{0,1\}^3 \rightarrow \{0,1\}$ has a 3CNF representation.
Some general reduction strategies

• Reduction by simple equivalence
 Ex. $IND - SET \leq_p VERTEX - COVER$
 $VERTEX - COVER \leq_p IND - SET$

• Reduction from special case to general case
 Ex. $VERTEX - COVER \leq_p SET - COVER$
 $3SAT \leq_p SAT$

• “Gadget” reductions
 Ex. $SAT \leq_p 3SAT$
 $3SAT \leq_p IND - SET$