BU CS 332 — Theory of Computation

Lecture 24: Reading:
* More NP-completeness ~ Sipser Ch 7.4-7.5

* Course wrap-up/final review
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NP-completeness

“The hardest languages in NP”
Definition: A language B is NP-complete if
1) B € NP, and

2) B is NP-hard: Every language A € NP is poly-time
reducible to B, i.e. A <p B

Last time:
Cook-Levin Theorem: SAT is NP-complete
3SAT is also NP-complete (by reduction from SAT)
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New NP-complete problems from old

Lemma: If A <pBandB <, (,thenA <, C
(poly-time reducibility is transitive)

Theorem: If B <, C for some NP-hard language B, then C
is also NP-hard

SCoroIIary: If C € NP and B <, C for some NP-compIet?

anguage B, then C is also NP-complete
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New NP-complete problems from old

All problems below are NP-complete and hence poly-time reduce to one another!

by definition of NP-completeness

SAT «

T L ear Taegualhes

INDEPENDENT SET DIR-HAM-CYCLE GRAPH 3-COLOR SUBSET-SUM
VERTEX COVER HAM-CYCLE PLANAR 3-COLOR SCHEDULING
(Liue
SET COVER l/ TSP -
SPARSC
¢ JRERAM
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3SAT (3-CNF Satisfiability) | i‘

Definitions:
* A literal either a variable of its negation Xs, X7
* A clause is a disjunction (OR) of literals  Ex. xt VX7 V X,

* A 3-CNF is a conjunction (AND) of clauses where each
clause contains exactly 3 literals

EX. Cl/\CZ/\/\Cm =
F2 e A e
(Xs VX7 VX)) A3V X VX)) A A(Xg Vg Vixg)

3SAT = {{@)|@ is a satisfiable 3 — CNF}
(LAst TIME: 9@ "5 NP-csylede)
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Some general reduction strategies

* Reduction by simple equivalence
Ex. IND — SET <, VERTEX — COVER
VERTEX — COVER <, IND — SET

* Reduction from special case to general case
Ex. VERTEX — COVER <, SET — COVER
3SAT <, SAT On wpaT  BCNE P
0ot Y.

* “Gadget” reductions
Ex. SAT <, 3SAT
BSAT <, IND — SET

—
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Independent Set

An independent set in an undirected graph G is a set of vertices that
includes at most one endpoint of every edge.

IND — SET = {{(G, k)|G is an undirected graph containing an

e

independent set with > k vertices}

Which of the following are
independent sets in this graph?

W

®) {L,5)

C) {2, 3, 6} Not an ind  sed Ve of
L6170 € TND-gET @D(3,4,6}  edge From 20
491777 ¢ Iuvgb CS332 - Theory of Computation <é:q) d’IM- SE’T 7
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Independent Set is NP-complete

1) IND — SET € NP
2) Reduce 3SAT <, IND — SET

Proof of 1) The following gives a poly-time verifier for IND — SET

Certificate: Vertices v4, ..., Vg

Verifier:
“On input (G k; V1, ooy V) ., Uk ), Where G is a graph, k is a natural number,
1. Checkthat vy, ... vj are distinct vertices in G

2. Check that there are no edges between the v;’s.”

e
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Independent Set is NP-complete

1) IND — SET € NP = €y ACN LG

2) Reduce 3SAT <, IND — SET
LY h-.-..s.st ossigtt = 6 hoy e M. g0 5

Wb . L W2 € 3AT &9 Cou) € TNO-seT —
Proof of 2) The following TM computes a poly-time reduction.

ninput (@), where @ is a 3CNF formula,

1. Construct graph G from @
* (G contains 3 vertices for each clause, one for each literal.

e Connect 3 literals in a clause in a triangle.
* Connect every literal to each of its negations.

2. Output (G, k), where k is the number of clauses in @.”

9:‘
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Example of the reduction

— (X1Vx2 Vx3)/\(x1Vx2 Vx3)/\(x1Vx2 Vx3)
\

Sol . 0%t ,uwaf ,-20 .= | %,

-
-

6~ 4<//’“©

@,

C { C
G, 3)
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Proof of correctness for reduction

Let k = # clauses and [ = # literals in ¢
Correctness: @ is satisfiable iff G has an independent set of size k

/\l

= Given a satisfying assignment, select one true literal from each
triangle. This is an independent set of size k

< Let S be an independent set in G of size k
* S must contain exactly one vertex in each triangle
e Set these literals to true, and set all other variables arbitrarily

* Truth assignment is consistent and all clauses are satisfied

Runtime: O (k + %) which is polynomial in input size
w 1L
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Some general reduction strategies

* Reduction by simple equivalence
Ex.IND — SET <, VERTEX — COVER
VERTEX — COVER <, IND — SET

* Reduction from special case to general case
Ex. VERTEX — COVER <, SET — COVER
3SAT <, SAT

* “Gadget” reductions
Ex. SAT <, 3SAT
3SAT <, IND — SET
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Vertex Cover

Given an undirected graph G, a vertex cover in G is a subset of
nodes which includes at /east one endpoint of every edge.

VERTEX — COVER ={{(G, k) | G is an undirected graph which has a

vertex cover with < k vertices}

27:"7,\‘5\(5 Sy o prex Lol

=2 <6,"{7 « VERTEX-1aER

12/8/2022
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Independent Set and Vertex Cover

Claim. S is an independent set iff IV \ S is a vertex cover.

— Let S be any independent set.
* Consider an arbitrary edge (u, v).
* Sisindependent = u g SorveS§S > ueV\ Sorvel'\ S.
* Thus, V' \ S covers (u, v).

< Let I/'\ S be any vertex cover.

* Considertwonodesu € Sandv € S.
* Then (u,v) ¢ E since V' \ S is a vertex cover.
* Thus, no two nodes in S are joined by an edge = S is an independent set.
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INDEPENDENT SET reduces to VERTEX COVER

Theorem. IND-SET <, VERTEX-COVER.

Proof. The following TM computes the reduction.

“On input (G, k), where G is an undirected graph and k is an
integer,

1. Output (G,n — k), where n is the number of nodes in G.”

Correctness:

* ( has an independent set of size at least k iff it has a vertex
cover of size at most n — k.

Runtime:
* Reduction runs in linear time.
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VERTEX COVER reduces to INDEPENDENT SET

Theorem. VERTEX-COVER Sp IND-SET

Proof. The following TM computes the reduction.

“On input (G, k), where G is an undirected graph and k is an
integer,

1. Output (G,n — k), where n is the number of nodes in G.”

Correctness:

* ( has a vertex cover of size at most k iff it has an
independent set of size at least n — k.

Runtime:
* Reduction runs in linear time.
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Final Topics

12/8/2022 CS332 - Theory of Computation

17



Everything from Midterms 1 and 2

* Midterm 1 topics: DFAs, NFAs, regular expressions,
distinguishing set method

(more detail in lecture 9 notes)

* Midterm 2 topics: Turing machines, TM variants, Church-
Turing thesis, decidable languages, countable and
uncountable sets, undecidability, reductions,
unrecognizability

(more detail in lecture 17 notes)
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Mapping Reducibility (5.3)

* Understand the definition of a computable function
* Understand the definition of a mapping reduction

* Know how to use mapping reductions to prove
decidability, undecidability, recognizability, and
unrecognizability



Time Complexity (7.1)

* Asymptotic notation: Big-Oh, little-oh

* Know the definition of running time for a TM and of
time complexity classes (TIME / NTIME)

* Understand how to simulate multi-tape TMs and NTMs

using single-tape TMs and know how to analyze the
running time overhead



Pand NP (7.2, 7.3)

* Know the definitions of P and NP as time complexity
classes

* Know how to analyze the running time of algorithms to
show that languages are in P / NP

e Understand the verifier interpretation of NP and why it
is equivalent to the NTM definition

* Know how to construct verifiers and analyze their
runtime



NP-Completeness (7.4, 7.5)

* Know the definition of poly-time reducibility

 Understand the definitions of NP-hardness and NP-
completeness

e Understand the statement of the Cook-Levin theorem
(don’t need to know its proof) 47 = ne-upele

* Understand several canonical NP-complete problems
and the relevant reductions: SAT, 3SAT, CLIQUE,
INDEPENDENT-SET, VERTEX-COVER, HAMPATH, SUBSET-

SUM



Space Complexity (8.1, 8.2)

* Know the definition of running space for a TM and of
space complexity classes (SPACE /JNSBACE)

e Understand the known relationships between space
complexity classes and time complexity classes

TTME (SONC SPAE(E n)
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Hierarchy Theorems (9.1)

* Formal statements of time and space hierarchy
theorems and how to apply them

* How to use hierarchy theorems to prove statements like
P + EXP

. (n)
THT, 7 Hw - o(%z‘)) fon

TIME (€M) . TIMEGRHN))
.7'"

| Toe or olews dockdie w we (gl bt
nk i Yve  ofgrm) ]

|
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Things we didn’t get to talk about

e Additional classes between NP and PSPACE (polynomial
hierarchy)

* Logarithmic space

 Relativization and the limits of diagonalization
* Boolean circuits

* Randomized algorithms / complexity classes

* Interactive and probabilistic proof systems

* Complexity of counting

https://cs-people.bu.edu/mbun/courses/535 F20/
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Theory and Algorithms Courses after 332

* Algorithms

e CS530/630 (Advanced algorithms)
e CS 531 (Optimization algorithms)
e CS 537 (Randomized algorithms)

* Complexity

e CS 535 (Complexity theory)
* Cryptography

e CS 538 (Foundations of crypto)
* Topics (CS 599)

E.g., Privacy in machine learning, algorithms and society,
sublinear algorithms, new developments in theory of
computing, communication complexity



Algorithms and Theory Research Group

e https://www.bu.edu/cs/research/theory/

 Weekly seminar: Mondays at 1:30
https://www.bu.edu/cs/algorithms-and-theory-seminar/

Great way to learn about research in theory of
computation!
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Tips for Preparing Exam
Solutions
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Designing (nondeterministic) time/space-
bounded deciders

Pye give the high-level deseription of a non-deterministic Turing Machine N deciding CLIQUE
in polynomial time. On input (G, k):

\ MV\ N o If k> n, reject.
“Q& Me a ‘1 e Non-deterministically guess a subset of k vertices.
e [or every pair of vertices in the subset, check that there is an edge connecting them.
If any pair doesn’t have an edge, reject.
e Accept.

—-
N First, we argue that this runs in non-deterministic polynomial time.

The first step always takes at most time log k-4 log n (comparison can be done by subtracting
the nunbers in binary and comparing to 0). If k > n, the Turing machine N always halts
in this much time.

Now, assume that k& < n. If the graph has n nodes and m edges, then the size of the input
e ‘ is at least n + m + log k (since the adjacency list of the graph is at least size n and integer

\ % fe% k takes log k bits to represent). Non-deterministically guessing a subset of k vertices takes

o ‘\ K time at most O(n + log k) (since this can be done by cycling through all the vertices and
\‘"a adding them into the subset non-deterministically, and stopping once the subset has size k).
Note that checking that a pair of vertices has an edge can be done in time at most n + m.
Hence, step 2 takes time at most w since there at most (i;) = k(k — 1)/2 pairs
‘ of vertices in a subset of vertices that has size k. Note that since & < n, this is polynomial

in the input size. Hence, the Turing machine runs in polynomial time in this case as well.

Finally, we are left to argue correctness. If (G, k) is in CLIQUE, then G contains a clique
of size k, and on the computational branch that guesses the corresponding k& nodes, Turing

( t‘k ) d % machine N will accept. On the other hand, if (G, k) is not in CLIQUE, then there is no

k-clique in G and hence none of the computational branches of the NTM N will accept.
Thus, in this case Turing Machine N will reject. Hence, N decides CLIQUE.

* Key components: High-level description of algorithm, explanation of
correctness, analysis of running time and/or space usage
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Designing NP verifiers

For simplicity in analyzing our algorithm, suppose each S; be encoded as an n bit string,
(‘ '\; L; < “.‘,e where the j’th bit is set to 1 if j € S; and is set to 0 otherwise. We will use a similar encoding
e/ for our certificate.
We give a poly-time verifier for M.S as follows. The certificate is a set T encoded as an n bit
string with at most k 1's. Our verifier is as follows.

“On input (Sy,...,! Smsn, k; T):
M MW\N\ 1. Scan T to check that it encodes a list of at most k distinct elements of [n]. Reject if not.
‘5 2 Pord= Lisans m:
3. Scan S; and scan T to check that they intersect. If not, Reject
4. Accept”
Correctness: If (Sq,...,S5,.n,k) € MS, then there exists a set T of size at most k that
intersects every set. The certificate which encodes this set will result in the algorithm suc-
"\-‘( ’s cessfully passing every check in step 3, so the algorithm will accept. On the other hand, if
( Q‘J( (S1,...,¢ Sm.n. k) € M S, then every set of size at most k will fail to intersect at least one S;,

so every certificate will lead to rejection.

Runtime: The encoding we are using for each set ensures that the length of the input is at

. least mn. Describing a certificate T takes n bits, which is hence polynomial in the input

\\M length. The loop in step 2 runs for m steps and the loop in step 3 runs for O(n®) steps, so

J Q‘S the total runtime of the algorithm is O(mn?). This is polynomial in the input length, which
d“ ‘1 Again, is at least mn.

* Key components: Description of certificate, high-level description of
algorithm, explanation of correctness, analysis of running time
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NP-completeness proofs

To show a language L is NP-complete:
1) Show L is in NP (follow guidelines from previous two slides)

2) Show L is NP-hard (usually) by giving a poly-time reduction
A <, L for some NP-complete language A

* High-level description of algorithm computing reduction
* Explanation of correctness: Why isw € A iff f(w) € L for
your reduction f?
% Analysis of running timgj
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Practice Problems
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Use a mapping reduction to show that
ALLty = {(M)|MisaTMand L(M) = X*}is
co-unrecognizable
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Use a mapping reduction to show that
ALLty = {(M)|MisaTMand L(M) = X*}is
unrecognizable

12/8/2022 CS332 - Theory of Computation

34



Give examples of the following languages: 1) A language
in P. 2) A decidable language that is notin P. 3) A
language for which it is unknown whether it is in P.
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Give an example of a problem that is solvable in
polynomial-time, but which is not in P
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Let L =
{{wy, w,)|3 strings x, y, z such that w; = xyz
and w, = xyRz}. Show that L € P.

12/8/2022 CS332 - Theory of Computation 37



Which of the following operations is P closed
under? Union, concatenation, star, intersection,
complement.
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Prove that LPATH =
{{G, s, t, k)|G is an directed graph containing
a simple path from s to t of length > k} isin NP
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Prove that LPATH is NP-hard
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Which of the following operations is NP closed
under? Union, concatenation, star, intersection,
complement.
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Which of the following statements are true?

- SPACE(2™) = SPACE (2™+1)

- SPACE(2™) = SPACE (3"

e NSPACE (n*) = SPACE (n°)
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