BU CS 332 - Theory of Computation

Lecture 24:

- More NP-completeness
- Course wrap-up/final review

Mark Bun
December 8, 2022

NP-completeness

"The hardest languages in NP"
Definition: A language B is NP-complete if

1) $B \in \mathrm{NP}$, and
2) B is NP-hard: Every language $A \in N P$ is poly-time reducible to B, i.e., $A \leq_{\mathrm{p}} B$

Last time:

Cook-Levin Theorem: SAT is NP-complete
$3 S A T$ is also NP-complete (by reduction from SAT)

New NP-complete problems from old

Lemma: If $A \leq_{\mathrm{p}} B$ and $B \leq_{\mathrm{p}} C$, then $A \leq_{\mathrm{p}} C$ (poly-time reducibility is transitive)
Theorem: If $B \leq_{\mathrm{p}} C$ for some NP -hard language B, then C is also NP-hard

Corollary: If $C \in \mathrm{NP}$ and $B \leq_{\mathrm{p}} C$ for some NP-complete language B, then C is also NP-complete

New NP-complete problems from old

All problems below are NP-complete and hence poly-time reduce to one another!

3SAT (3-CNF Satisfiability)

Definitions:

- A literal either a variable of its negation $x_{5}, \overline{x_{7}}$
- A clause is a disjunction (OR) of literals Ex. $x_{5} \vee \overline{x_{7}} \vee x_{2}$
- A 3-CNF is a conjunction (AND) of clauses where each clause contains exactly 3 literals
Ex. $C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}=$

$$
\left(x_{5} \vee \overline{x_{7}} \vee x_{2}\right) \wedge\left(\overline{x_{3}} \vee x_{4} \vee x_{1}\right) \wedge \cdots \wedge\left(x_{1} \vee x_{1} \vee x_{1}\right)
$$

$3 S A T=\{\langle\varphi\rangle \mid \varphi$ is a satisfiable $3-\mathrm{CNF}\}$

Some general reduction strategies

- Reduction by simple equivalence

$$
\begin{aligned}
& \text { Ex. } I N D-S E T \leq_{\mathrm{p}} V E R T E X-C O V E R \\
& V E R T E X-C O V E R \leq_{\mathrm{p}} I N D-S E T
\end{aligned}
$$

- Reduction from special case to general case

Ex. VERTEX - COVER $\leq_{\mathrm{p}} S E T-C O V E R$ $3 S A T \leq_{\mathrm{p}}$ SAT

- "Gadget" reductions

Ex. $S A T \leq_{\mathrm{p}} 3 S A T$
$\quad 3 S A T \leq_{\mathrm{p}} I N D-S E T$

Independent Set

An independent set in an undirected graph G is a set of vertices that includes at most one endpoint of every edge.
$I N D-S E T=\{\langle G, k\rangle \mid G$ is an undirected graph containing an independent set with $\geq k$ vertices $\}$

Which of the following are independent sets in this graph?
a) $\{1\}$
b) $\{1,5\}$
c) $\{2,3,6\}$
d) $\{3,4,6\}$

Independent Set is NP-complete

1) $I N D-S E T \in N P$
2) Reduce $3 S A T \leq_{\mathrm{p}} I N D-S E T$

Proof of 1) The following gives a poly-time verifier for IND - SET
Certificate: Vertices v_{1}, \ldots, v_{k}
Verifier:
"On input $\left\langle G, k ; v_{1}, \ldots, v_{k}\right\rangle$, where G is a graph, k is a natural number,

1. Check that $v_{1}, \ldots v_{k}$ are distinct vertices in G
2. Check that there are no edges between the $v_{i}{ }^{\prime}$ s."

Independent Set is NP-complete

1) $I N D-S E T \in N P$
2) Reduce $3 S A T \leq_{\mathrm{p}} I N D-S E T$

Proof of 2) The following TM computes a poly-time reduction.
"On input $\langle\varphi\rangle$, where φ is a 3CNF formula,

1. Construct graph G from φ

- G contains 3 vertices for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect every literal to each of its negations.

2. Output $\langle G, k\rangle$, where k is the number of clauses in $\varphi . "$

Example of the reduction

$$
\varphi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right)
$$

Proof of correctness for reduction

Let $k=\#$ clauses and $l=$ \# literals in φ
Correctness: φ is satisfiable iff G has an independent set of size k
\Rightarrow Given a satisfying assignment, select one true literal from each triangle. This is an independent set of size k
\Longleftarrow Let S be an independent set in G of size k

- S must contain exactly one vertex in each triangle
- Set these literals to true, and set all other variables arbitrarily
- Truth assignment is consistent and all clauses are satisfied

Runtime: $O\left(k+l^{2}\right)$ which is polynomial in input size

Some general reduction strategies

- Reduction by simple equivalence

$$
\text { Ex. } \begin{aligned}
& I N D-S E T \leq_{\mathrm{p}} V E R T E X-C O V E R \\
& V E R T E X-C O V E R \leq_{\mathrm{p}} I N D-S E T
\end{aligned}
$$

- Reduction from special case to general case

Ex. VERTEX - COVER $\leq_{\mathrm{p}} S E T-\operatorname{COVER}$ $3 S A T \leq_{\mathrm{p}}$ SAT

- "Gadget" reductions

Ex. $S A T \leq_{\mathrm{p}} 3 S A T$ $3 S A T \leq_{\mathrm{p}}$ IND $-S E T$

Vertex Cover

Given an undirected graph G, a vertex cover in G is a subset of nodes which includes at least one endpoint of every edge.

VERTEX $-\operatorname{COVER}=\{\langle G, k\rangle \mid G$ is an undirected graph which has a vertex cover with $\leq k$ vertices $\}$

Independent Set and Vertex Cover

Claim. S is an independent set iff $V \backslash S$ is a vertex cover.
\Rightarrow Let S be any independent set.

- Consider an arbitrary edge (u, v).
- S is independent $\Rightarrow u \notin S$ or $v \notin S \Rightarrow u \in V \backslash S$ or $v \in V \backslash S$.
- Thus, $V \backslash S$ covers (u, v).
\Longleftarrow Let $V \backslash S$ be any vertex cover.
- Consider two nodes $u \in S$ and $v \in S$.

- Then $(u, v) \notin E$ since $V \backslash S$ is a vertex cover.
- Thus, no two nodes in S are joined by an edge $\Rightarrow S$ is an independent set.

INDEPENDENT SET reduces to VERTEX COVER

Theorem. IND-SET \leq_{p} VERTEX-COVER.
Proof. The following TM computes the reduction.
"On input $\langle G, k\rangle$, where G is an undirected graph and k is an integer,

1. Output $\langle G, n-k\rangle$, where n is the number of nodes in G."

Correctness:

- G has an independent set of size at least k iff it has a vertex cover of size at most $n-k$.
Runtime:
- Reduction runs in linear time.

VERTEX COVER reduces to INDEPENDENT SET

Theorem. VERTEX-COVER \leq_{p} IND-SET
Proof. The following TM computes the reduction.
"On input $\langle G, k\rangle$, where G is an undirected graph and k is an integer,

1. Output $\langle G, n-k\rangle$, where n is the number of nodes in G."

Correctness:

- G has a vertex cover of size at most k iff it has an independent set of size at least $n-k$.
Runtime:
- Reduction runs in linear time.

Final Topics

Everything from Midterms 1 and 2

- Midterm 1 topics: DFAs, NFAs, regular expressions, distinguishing set method
(more detail in lecture 9 notes)
- Midterm 2 topics: Turing machines, TM variants, ChurchTuring thesis, decidable languages, countable and uncountable sets, undecidability, reductions, unrecognizability
(more detail in lecture 17 notes)

Mapping Reducibility (5.3)

- Understand the definition of a computable function
- Understand the definition of a mapping reduction
- Know how to use mapping reductions to prove decidability, undecidability, recognizability, and unrecognizability

Time Complexity (7.1)

- Asymptotic notation: Big-Oh, little-oh
- Know the definition of running time for a TM and of time complexity classes (TIME / NTIME)
- Understand how to simulate multi-tape TMs and NTMs using single-tape TMs and know how to analyze the running time overhead
P and NP (7.2, 7.3)
- Know the definitions of P and NP as time complexity classes
- Know how to analyze the running time of algorithms to show that languages are in P/NP
- Understand the verifier interpretation of NP and why it is equivalent to the NTM definition
- Know how to construct verifiers and analyze their runtime

NP-Completeness (7.4, 7.5)

- Know the definition of poly-time reducibility
- Understand the definitions of NP-hardness and NPcompleteness
- Understand the statement of the Cook-Levin theorem (don't need to know its proof)
- Understand several canonical NP-complete problems and the relevant reductions: SAT, 3SAT, CLIQUE, INDEPENDENT-SET, VERTEX-COVER, HAMPATH, SUBSETSUM

Space Complexity (8.1, 8.2)

- Know the definition of running space for a TM and of space complexity classes (SPACE / NSPACE)
- Understand the known relationships between space complexity classes and time complexity classes

Hierarchy Theorems (9.1)

- Formal statements of time and space hierarchy theorems and how to apply them
- How to use hierarchy theorems to prove statements like P \neq EXP

Things we didn't get to talk about

- Additional classes between NP and PSPACE (polynomial hierarchy)
- Logarithmic space
- Relativization and the limits of diagonalization
- Boolean circuits
- Randomized algorithms / complexity classes
- Interactive and probabilistic proof systems
- Complexity of counting
https://cs-people.bu.edu/mbun/courses/535 F20/

Theory and Algorithms Courses after 332

- Algorithms
- CS 530/630 (Advanced algorithms)
- CS 531 (Optimization algorithms)
- CS 537 (Randomized algorithms)
- Complexity
- CS 535 (Complexity theory)
- Cryptography
- CS 538 (Foundations of crypto)
- Topics (CS 599)
E.g., Privacy in machine learning, algorithms and society, sublinear algorithms, new developments in theory of computing, communication complexity

Algorithms and Theory Research Group

- https://www.bu.edu/cs/research/theory/
- Weekly seminar: Mondays at 1:30 https://www.bu.edu/cs/algorithms-and-theory-seminar/

Great way to learn about research in theory of computation!

Tips for Preparing Exam Solutions

Designing (nondeterministic) time/spacebounded deciders

We give the high-level description of a non-deterministic Turing Machine N deciding CLIQUE in polynomial time. On input $\langle G, k\rangle$:

- If $k>n$, reject.
- Non-deterministically guess a subset of k vertices.
- For every pair of vertices in the subset, check that there is an edge connecting them. If any pair doesn't have an edge, reject.
- Accept.

First, we argue that this runs in non-deterministic polynomial time.
The first step always takes at most time $\log k+\log n$ (comparison can be done by subtracting the numbers in binary and comparing to 0). If $k>n$, the Turing machine N always halts in this much time.
Now, assume that $k \leq n$. If the graph has n nodes and m edges, then the size of the input is at least $n+m+\log k$ (since the adjacency list of the graph is at least size n and integer k takes $\log k$ bits to represent). Non-deterministically guessing a subset of k vertices takes time at most $O(n+\log k)$ (since this can be done by cycling through all the vertices and adding them into the subset non-deterministically, and stopping once the subset has size k). Note that checking that a pair of vertices has an edge can be done in time at most $n+m$. Hence, step 2 takes time at most $\frac{(n+m)(k(k-1))}{2}$ since there at most $\binom{k}{2}=k(k-1) / 2$ pairs of vertices in a subset of vertices that has size k. Note that since $k \leq n$, this is polynomial in the input size. Hence, the Turing machine runs in polynomial time in this case as well.

Finally, we are left to argue correctness. If $\langle G, k\rangle$ is in CLIQUE, then G contains a clique of size k, and on the computational branch that guesses the corresponding k nodes, Turing machine N will accept. On the other hand, if $\langle G, k\rangle$ is not in CLIQUE, then there is no k-clique in G and hence none of the computational branches of the NTM N will accept. Thus, in this case Turing Machine N will reject. Hence, N decides CLIQUE.

- Key components: High-level description of algorithm, explanation of correctness, analysis of running time and/or space usage

Designing NP verifiers

For simplicity in analyzing our algorithm, suppose each S_{i} be encoded as an n bit string, where the j 'th bit is set to 1 if $j \in S_{i}$ and is set to 0 otherwise. We will use a similar encoding for our certificate.
We give a poly-time verifier for $M S$ as follows. The certificate is a set T encoded as an n bit string with at most k 1's. Our verifier is as follows.
"On input $\left\langle S_{1}, \ldots, S_{m}, n, k ; T\right\rangle$:

1. Scan T to check that it encodes a list of at most k distinct elements of $[n]$. Reject if not.
2. For $i=1, \ldots, m$:
3. Scan S_{i} and scan T to check that they intersect. If not, Reject
4. Accept."

Correctness: If $\left\langle S_{1}, \ldots, S_{m}, n, k\right\rangle \in M S$, then there exists a set T of size at most k that intersects every set. The certificate which encodes this set will result in the algorithm successfully passing every check in step 3 , so the algorithm will accept. On the other hand, if $\left\langle S_{1}, \ldots, S_{m}, n, k\right\rangle \notin M S$, then every set of size at most k will fail to intersect at least one S_{i}, so every certificate will lead to rejection.
Runtime: The encoding we are using for each set ensures that the length of the input is at least $m n$. Describing a certificate T takes n bits, which is hence polynomial in the input length. The loop in step 2 runs for m steps and the loop in step 3 runs for $O\left(n^{2}\right)$ steps, so the total runtime of the algorithm is $O\left(m n^{2}\right)$. This is polynomial in the input length, which again, is at least $m n$.

- Key components: Description of certificate, high-level description of algorithm, explanation of correctness, analysis of running time

NP-completeness proofs

To show a language L is NP-complete:

1) Show L is in NP (follow guidelines from previous two slides)
2) Show L is NP-hard (usually) by giving a poly-time reduction $A \leq_{p} L$ for some NP-complete language A

- High-level description of algorithm computing reduction
- Explanation of correctness: Why is $w \in A$ iff $f(w) \in L$ for your reduction f ?
- Analysis of running time

Practice Problems

Use a mapping reduction to show that $A L L_{\mathrm{TM}}=\left\{\langle M\rangle \mid M\right.$ is a TM and $\left.L(M)=\Sigma^{*}\right\}$ is co-unrecognizable

Use a mapping reduction to show that $A L L_{\mathrm{TM}}=\left\{\langle M\rangle \mid M\right.$ is a TM and $\left.L(M)=\Sigma^{*}\right\}$ is unrecognizable

Give examples of the following languages: 1) A language in P. 2) A decidable language that is not in P. 3) A language for which it is unknown whether it is in P.

Give an example of a problem that is solvable in polynomial-time, but which is not in P

Let $L=$

$\left\{\left\langle w_{1}, w_{2}\right\rangle \mid \exists\right.$ strings x, y, z such that $w_{1}=x y z$ and $\left.w_{2}=x y^{R} z\right\}$. Show that $L \in P$.

Which of the following operations is P closed under? Union, concatenation, star, intersection, complement.

Prove that $L P A T H=$
$\{\langle G, s, t, k\rangle \mid G$ is an directed graph containing a simple path from s to t of length $\geq k\}$ is in NP

Prove that LPATH is NP-hard

Which of the following operations is NP closed under? Union, concatenation, star, intersection, complement.

Which of the following statements are true?

- $\operatorname{SPACE}\left(2^{n}\right)=\operatorname{SPACE}\left(2^{n+1}\right)$
- $\operatorname{SPACE}\left(2^{n}\right)=\operatorname{SPACE}\left(3^{n}\right)$
- $\operatorname{NSPACE}\left(n^{2}\right)=\operatorname{SPACE}\left(n^{5}\right)$

