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NP-completeness
“The hardest languages in NP”
Definition: A language 𝐵𝐵 is NP-complete if

1) 𝐵𝐵 ∈ NP, and
2) 𝐵𝐵 is NP-hard: Every language 𝐴𝐴 ∈ NP is poly-time 

reducible to 𝐵𝐵, i.e., 𝐴𝐴 ≤p 𝐵𝐵

Last time: 
Cook-Levin Theorem: 𝑆𝑆𝐴𝐴𝑆𝑆 is NP-complete
3𝑆𝑆𝐴𝐴𝑆𝑆 is also NP-complete (by reduction from 𝑆𝑆𝐴𝐴𝑆𝑆)
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New NP-complete problems from old
Lemma: If 𝐴𝐴 ≤p 𝐵𝐵 and 𝐵𝐵 ≤p 𝐶𝐶, then 𝐴𝐴 ≤p 𝐶𝐶

(poly-time reducibility is transitive) 
Theorem: If 𝐵𝐵 ≤p 𝐶𝐶 for some NP-hard language 𝐵𝐵, then 𝐶𝐶
is also NP-hard
Corollary: If 𝐶𝐶 ∈ NP and 𝐵𝐵 ≤p 𝐶𝐶 for some NP-complete 
language 𝐵𝐵, then 𝐶𝐶 is also NP-complete
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New NP-complete problems from old
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All problems below are NP-complete and hence poly-time reduce to one another!

SAT

3SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

by definition of NP-completeness



3𝑆𝑆𝐴𝐴𝑆𝑆 (3-CNF Satisfiability)

Definitions: 
• A literal either a variable of its negation 𝑥𝑥5 ,  𝑥𝑥7
• A clause is a disjunction (OR) of literals Ex. 𝑥𝑥5 ∨ 𝑥𝑥7 ∨ 𝑥𝑥2
• A 3-CNF is a conjunction (AND) of clauses where each 

clause contains exactly 3 literals
Ex. 𝐶𝐶1 ∧ 𝐶𝐶2 ∧ … ∧ 𝐶𝐶𝑚𝑚 =

𝑥𝑥5 ∨ 𝑥𝑥7 ∨ 𝑥𝑥2 ∧ 𝑥𝑥3 ∨ 𝑥𝑥4 ∨ 𝑥𝑥1 ∧ ⋯∧ 𝑥𝑥1 ∨ 𝑥𝑥1 ∨ 𝑥𝑥1

3𝑆𝑆𝐴𝐴𝑆𝑆 = 𝜑𝜑 𝜑𝜑 is a satisfiable 3 − CNF
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Some general reduction strategies
• Reduction by simple equivalence

Ex. 𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑆𝑆𝑆𝑆𝑆𝑆 ≤p 𝑉𝑉𝑆𝑆𝑉𝑉𝑆𝑆𝑆𝑆𝑉𝑉 − 𝐶𝐶𝑂𝑂𝑉𝑉𝑆𝑆𝑉𝑉
𝑉𝑉𝑆𝑆𝑉𝑉𝑆𝑆𝑆𝑆𝑉𝑉 − 𝐶𝐶𝑂𝑂𝑉𝑉𝑆𝑆𝑉𝑉 ≤p 𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑆𝑆𝑆𝑆𝑆𝑆

• Reduction from special case to general case
Ex. 𝑉𝑉𝑆𝑆𝑉𝑉𝑆𝑆𝑆𝑆𝑉𝑉 − 𝐶𝐶𝑂𝑂𝑉𝑉𝑆𝑆𝑉𝑉 ≤p 𝑆𝑆𝑆𝑆𝑆𝑆 − 𝐶𝐶𝑂𝑂𝑉𝑉𝑆𝑆𝑉𝑉

3𝑆𝑆𝐴𝐴𝑆𝑆 ≤p 𝑆𝑆𝐴𝐴𝑆𝑆

• “Gadget” reductions
Ex. 𝑆𝑆𝐴𝐴𝑆𝑆 ≤p 3𝑆𝑆𝐴𝐴𝑆𝑆

3𝑆𝑆𝐴𝐴𝑆𝑆 ≤p 𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑆𝑆𝑆𝑆𝑆𝑆
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Independent Set
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An independent set in an undirected graph 𝐺𝐺 is a set of vertices that 
includes at most one endpoint of every edge.

𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐺𝐺,𝑘𝑘 𝐺𝐺 is an undirected graph containing an

independent set with ≥ 𝑘𝑘 vertices}

1

2

3

4

5

6

Which of the following are 
independent sets in this graph?

a) {1}
b) {1, 5}
c) {2, 3, 6}
d) {3, 4, 6}



Independent Set is NP-complete
1) 𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑆𝑆𝑆𝑆𝑆𝑆 ∈ NP
2) Reduce 3𝑆𝑆𝐴𝐴𝑆𝑆 ≤p 𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑆𝑆𝑆𝑆𝑆𝑆

Proof of 1) The following gives a poly-time verifier for 𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑆𝑆𝑆𝑆𝑆𝑆
Certificate: Vertices 𝑣𝑣1, … , 𝑣𝑣𝑘𝑘
Verifier:
“On input 𝐺𝐺,𝑘𝑘; 𝑣𝑣1, … , 𝑣𝑣𝑘𝑘 , where 𝐺𝐺 is a graph, 𝑘𝑘 is a natural number,
1. Check that 𝑣𝑣1, … 𝑣𝑣𝑘𝑘 are distinct vertices in 𝐺𝐺
2. Check that there are no edges between the 𝑣𝑣𝑖𝑖’s.”
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Independent Set is NP-complete
1) 𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑆𝑆𝑆𝑆𝑆𝑆 ∈ NP
2) Reduce 3𝑆𝑆𝐴𝐴𝑆𝑆 ≤p 𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑆𝑆𝑆𝑆𝑆𝑆

Proof of 2) The following TM computes a poly-time reduction.
“On input 𝜑𝜑 , where 𝜑𝜑 is a 3CNF formula,
1. Construct graph 𝐺𝐺 from 𝜑𝜑

• 𝐺𝐺 contains 3 vertices for each clause, one for each literal.
• Connect 3 literals in a clause in a triangle.
• Connect every literal to each of its negations.

2. Output 𝐺𝐺,𝑘𝑘 , where 𝑘𝑘 is the number of clauses in 𝜑𝜑.”
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Example of the reduction
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𝜑𝜑 = 𝑥𝑥1 ∨ 𝑥𝑥2 ∨ 𝑥𝑥3 ∧ 𝑥𝑥1 ∨ 𝑥𝑥2 ∨ 𝑥𝑥3 ∧ 𝑥𝑥1 ∨ 𝑥𝑥2 ∨ 𝑥𝑥3



Proof of correctness for reduction
Let 𝑘𝑘 = # clauses and 𝑙𝑙 = # literals in 𝜑𝜑
Correctness: 𝜑𝜑 is satisfiable iff 𝐺𝐺 has an independent set of size 𝑘𝑘

⟹ Given a satisfying assignment, select one true literal from each 
triangle. This is an independent set of size 𝑘𝑘

⟸ Let 𝑆𝑆 be an independent set in 𝐺𝐺 of size 𝑘𝑘
• 𝑆𝑆 must contain exactly one vertex in each triangle
• Set these literals to true, and set all other variables arbitrarily
• Truth assignment is consistent and all clauses are satisfied

Runtime: 𝑂𝑂(𝑘𝑘 + 𝑙𝑙2) which is polynomial in input size
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Some general reduction strategies
• Reduction by simple equivalence

Ex. 𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑆𝑆𝑆𝑆𝑆𝑆 ≤p 𝑉𝑉𝑆𝑆𝑉𝑉𝑆𝑆𝑆𝑆𝑉𝑉 − 𝐶𝐶𝑂𝑂𝑉𝑉𝑆𝑆𝑉𝑉
𝑉𝑉𝑆𝑆𝑉𝑉𝑆𝑆𝑆𝑆𝑉𝑉 − 𝐶𝐶𝑂𝑂𝑉𝑉𝑆𝑆𝑉𝑉 ≤p 𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑆𝑆𝑆𝑆𝑆𝑆

• Reduction from special case to general case
Ex. 𝑉𝑉𝑆𝑆𝑉𝑉𝑆𝑆𝑆𝑆𝑉𝑉 − 𝐶𝐶𝑂𝑂𝑉𝑉𝑆𝑆𝑉𝑉 ≤p 𝑆𝑆𝑆𝑆𝑆𝑆 − 𝐶𝐶𝑂𝑂𝑉𝑉𝑆𝑆𝑉𝑉

3𝑆𝑆𝐴𝐴𝑆𝑆 ≤p 𝑆𝑆𝐴𝐴𝑆𝑆

• “Gadget” reductions
Ex. 𝑆𝑆𝐴𝐴𝑆𝑆 ≤p 3𝑆𝑆𝐴𝐴𝑆𝑆

3𝑆𝑆𝐴𝐴𝑆𝑆 ≤p 𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑆𝑆𝑆𝑆𝑆𝑆
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Vertex Cover
Given an undirected graph 𝐺𝐺, a vertex cover in 𝐺𝐺 is a subset of 
nodes which includes at least one endpoint of every edge.

𝑉𝑉𝑆𝑆𝑉𝑉𝑆𝑆𝑆𝑆𝑉𝑉 − 𝐶𝐶𝑂𝑂𝑉𝑉𝑆𝑆𝑉𝑉 = { 𝐺𝐺,𝑘𝑘 ∣ 𝐺𝐺 is an undirected graph which has a 

vertex cover with ≤ 𝑘𝑘 vertices}
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Presenter Notes
Presentation Notes
Application: find set of mutually non-conflicting points



Independent Set and Vertex Cover
Claim. 𝑆𝑆 is an independent set iff 𝑉𝑉 ∖ 𝑆𝑆 is a vertex cover.
⟹ Let 𝑆𝑆 be any independent set.

• Consider an arbitrary edge (𝑢𝑢, 𝑣𝑣).
• 𝑆𝑆 is independent ⟹𝑢𝑢 ∉ 𝑆𝑆 or 𝑣𝑣 ∉ 𝑆𝑆 ⟹ 𝑢𝑢 ∈ 𝑉𝑉 ∖ 𝑆𝑆 or 𝑣𝑣 ∈ 𝑉𝑉 ∖ 𝑆𝑆.
• Thus, 𝑉𝑉 ∖ 𝑆𝑆 covers (𝑢𝑢, 𝑣𝑣).

⟸ Let 𝑉𝑉 ∖ 𝑆𝑆 be any vertex cover.
• Consider two nodes 𝑢𝑢 ∈ 𝑆𝑆 and 𝑣𝑣 ∈ 𝑆𝑆.
• Then (𝑢𝑢, 𝑣𝑣) ∉ 𝑆𝑆 since 𝑉𝑉 ∖ 𝑆𝑆 is a vertex cover.
• Thus, no two nodes in 𝑆𝑆 are joined by an edge ⟹𝑆𝑆 is an independent set.
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INDEPENDENT SET reduces to VERTEX COVER
Theorem. IND-SET ≤p VERTEX-COVER.
Proof.  The following TM computes the reduction.
“On input 𝐺𝐺, 𝑘𝑘 , where 𝐺𝐺 is an undirected graph and 𝑘𝑘 is an 
integer,
1. Output 𝐺𝐺,𝑛𝑛 − 𝑘𝑘 , where 𝑛𝑛 is the number of nodes in 𝐺𝐺.”

Correctness: 
• 𝐺𝐺 has an independent set of size at least 𝑘𝑘 iff it has a vertex 

cover of size at most 𝑛𝑛 − 𝑘𝑘.
Runtime:
• Reduction runs in linear time.
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VERTEX COVER reduces to INDEPENDENT SET
Theorem. VERTEX-COVER ≤p IND-SET
Proof.  The following TM computes the reduction.
“On input 𝐺𝐺, 𝑘𝑘 , where 𝐺𝐺 is an undirected graph and 𝑘𝑘 is an 
integer,
1. Output 𝐺𝐺,𝑛𝑛 − 𝑘𝑘 , where 𝑛𝑛 is the number of nodes in 𝐺𝐺.”

Correctness: 
• 𝐺𝐺 has a vertex cover of size at most 𝑘𝑘 iff it has an 

independent set of size at least 𝑛𝑛 − 𝑘𝑘.
Runtime:
• Reduction runs in linear time.
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Final Topics
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Everything from Midterms 1 and 2

• Midterm 1 topics: DFAs, NFAs, regular expressions, 
distinguishing set method

(more detail in lecture 9 notes)

• Midterm 2 topics: Turing machines, TM variants, Church-
Turing thesis, decidable languages, countable and 
uncountable sets, undecidability, reductions, 
unrecognizability 

(more detail in lecture 17 notes)
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Mapping Reducibility (5.3)
• Understand the definition of a computable function
• Understand the definition of a mapping reduction
• Know how to use mapping reductions to prove 

decidability, undecidability, recognizability, and 
unrecognizability
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Time Complexity (7.1)
• Asymptotic notation: Big-Oh, little-oh
• Know the definition of running time for a TM and of 

time complexity classes (TIME / NTIME)
• Understand how to simulate multi-tape TMs and NTMs 

using single-tape TMs and know how to analyze the 
running time overhead
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P and NP (7.2, 7.3)
• Know the definitions of P and NP as time complexity 

classes
• Know how to analyze the running time of algorithms to 

show that languages are in P / NP
• Understand the verifier interpretation of NP and why it 

is equivalent to the NTM definition
• Know how to construct verifiers and analyze their 

runtime
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NP-Completeness (7.4, 7.5)
• Know the definition of poly-time reducibility
• Understand the definitions of NP-hardness and NP-

completeness
• Understand the statement of the Cook-Levin theorem 

(don’t need to know its proof)
• Understand several canonical NP-complete problems 

and the relevant reductions: SAT, 3SAT, CLIQUE, 
INDEPENDENT-SET, VERTEX-COVER, HAMPATH, SUBSET-
SUM
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Space Complexity (8.1, 8.2)
• Know the definition of running space for a TM and of 

space complexity classes (SPACE / NSPACE)
• Understand the known relationships between space 

complexity classes and time complexity classes
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Hierarchy Theorems (9.1)
• Formal statements of time and space hierarchy 

theorems and how to apply them
• How to use hierarchy theorems to prove statements like 

P ≠ EXP
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Things we didn’t get to talk about
• Additional classes between NP and PSPACE (polynomial 

hierarchy)
• Logarithmic space
• Relativization and the limits of diagonalization
• Boolean circuits
• Randomized algorithms / complexity classes
• Interactive and probabilistic proof systems
• Complexity of counting

https://cs-people.bu.edu/mbun/courses/535_F20/
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Theory and Algorithms Courses after 332
• Algorithms

• CS 530/630 (Advanced algorithms)
• CS 531 (Optimization algorithms)
• CS 537 (Randomized algorithms)

• Complexity
• CS 535 (Complexity theory)

• Cryptography
• CS 538 (Foundations of crypto)

• Topics (CS 599)
E.g., Privacy in machine learning, algorithms and society, 
sublinear algorithms, new developments in theory of 
computing, communication complexity
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Algorithms and Theory Research Group
• https://www.bu.edu/cs/research/theory/

• Weekly seminar:  Mondays at 1:30
https://www.bu.edu/cs/algorithms-and-theory-seminar/

Great way to learn about research in theory of    
computation!
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Tips for Preparing Exam 
Solutions
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Designing (nondeterministic) time/space-
bounded deciders
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• Key components: High-level description of algorithm, explanation of 
correctness, analysis of running time and/or space usage



Designing NP verifiers
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• Key components: Description of certificate, high-level description of 
algorithm, explanation of correctness, analysis of running time



NP-completeness proofs
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To show a language 𝐿𝐿 is NP-complete:

1) Show 𝐿𝐿 is in NP (follow guidelines from previous two slides)

2) Show 𝐿𝐿 is NP-hard (usually) by giving a poly-time reduction 
𝐴𝐴 ≤𝑝𝑝 𝐿𝐿 for some NP-complete language 𝐴𝐴

• High-level description of algorithm computing reduction
• Explanation of correctness: Why is 𝑤𝑤 ∈ 𝐴𝐴 iff 𝑓𝑓 𝑤𝑤 ∈ 𝐿𝐿 for 

your reduction 𝑓𝑓?
• Analysis of running time



Practice Problems
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Use a mapping reduction to show that 
𝐴𝐴𝐿𝐿𝐿𝐿TM = { 𝑀𝑀 |𝑀𝑀 is a TM and 𝐿𝐿 𝑀𝑀 = Σ∗} is 
co-unrecognizable
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Use a mapping reduction to show that 
𝐴𝐴𝐿𝐿𝐿𝐿TM = { 𝑀𝑀 |𝑀𝑀 is a TM and 𝐿𝐿 𝑀𝑀 = Σ∗} is 
unrecognizable
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Give examples of the following languages: 1) A language 
in P. 2) A decidable language that is not in P. 3) A 
language for which it is unknown whether it is in P.
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Give an example of a problem that is solvable in 
polynomial-time, but which is not in P
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Let 𝐿𝐿 =
{ 𝑤𝑤1,𝑤𝑤2 |∃ strings 𝑥𝑥,𝑦𝑦, 𝑧𝑧 such that 𝑤𝑤1 = 𝑥𝑥𝑦𝑦𝑧𝑧
and 𝑤𝑤2 = 𝑥𝑥𝑦𝑦𝑅𝑅𝑧𝑧}. Show that 𝐿𝐿 ∈ P.
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Which of the following operations is P closed 
under? Union, concatenation, star, intersection, 
complement.
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Prove that 𝐿𝐿𝐿𝐿𝐴𝐴𝑆𝑆𝐿𝐿 =
{ 𝐺𝐺, 𝑠𝑠, 𝑡𝑡, 𝑘𝑘 |𝐺𝐺 is an directed graph containing
a simple path from 𝑠𝑠 to 𝑡𝑡 of length ≥ 𝑘𝑘} is in NP
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Prove that 𝐿𝐿𝐿𝐿𝐴𝐴𝑆𝑆𝐿𝐿 is NP-hard
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Which of the following operations is NP closed 
under? Union, concatenation, star, intersection, 
complement.
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Which of the following statements are true?

• 𝑆𝑆𝐿𝐿𝐴𝐴𝐶𝐶𝑆𝑆(2𝑛𝑛) = 𝑆𝑆𝐿𝐿𝐴𝐴𝐶𝐶𝑆𝑆(2𝑛𝑛+1)

• 𝑆𝑆𝐿𝐿𝐴𝐴𝐶𝐶𝑆𝑆(2𝑛𝑛) = 𝑆𝑆𝐿𝐿𝐴𝐴𝐶𝐶𝑆𝑆(3𝑛𝑛)

• 𝐼𝐼𝑆𝑆𝐿𝐿𝐴𝐴𝐶𝐶𝑆𝑆(𝑛𝑛2) = 𝑆𝑆𝐿𝐿𝐴𝐴𝐶𝐶𝑆𝑆(𝑛𝑛5)
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