Lecture 2:

• Deterministic Finite Automata

• Regular Operations

• Non-deterministic FAs

Reading:
Sipser Ch 1.1-1.2

Mark Bun
January 27, 2020
Deterministic Finite Automata
A (Real-Life?) Example

• **Example:** Car stereo

• $P = \text{Power button (ON/OFF)}$

• $S = \text{Source button (cycles through Radio/Bluetooth/USB)}$

 Only works when stereo is ON, but source remembered when stereo is OFF

• **Starts OFF in Radio mode**

• **A computational problem:** Does a sequence of button presses in $\{P, S\}^*$ leave the stereo ON in USB mode?
Machine Models

• **Finite Automata (FAs):** Machine with a finite amount of unstructured memory

\[
\begin{array}{cccc}
P & S & P & S & \ldots
\end{array}
\]

Control scans left-to-right

`state diagram`
- Different states control can be in
- How transitions between states
- How it decides to accept or reject
A DFA for the car stereo problem
A DFA for Parity

Parity: Given a string consisting of a's and b's, does it contain an even number of a's?

$\Sigma = \{a, b\} \quad L = \{w \mid w \text{ contains an even number of } a\text{'s}\}$
Anatomy of a DFA
Formal Definition of a DFA

A finite automaton is a 5-tuple \(M = (Q, \Sigma, \delta, q_0, F) \)

- \(Q \) is the set of states
- \(\Sigma \) is the alphabet
- \(\delta : Q \times \Sigma \rightarrow Q \) is the transition function
- \(q_0 \in Q \) is the start state
- \(F \subseteq Q \) is the set of accept states
A DFA for Parity

Parity: Given a string consisting of \(a\)'s and \(b\)'s, does it contain an even number of \(a\)'s?

\[\Sigma = \{a, b\} \quad L = \{w \mid w \text{ contains an even number of } a\}'s\}

State set \(Q = \{q_0, q_1, q_2\}\)

Alphabet \(\Sigma = \{a, b\}\)

Transition function \(\delta\)

\[
\begin{array}{c|cc}
\delta & a & b \\
\hline
q_0 & q_1 & q_0 \\
q_1 & q_0 & q_1 \\
q_2 & q_1 & q_0 \\
\end{array}
\]

Start state \(q_0\)

Set of accept states \(F = \{q_0, q_2\}\)
Formal Definition of DFA Computation

A DFA $M = (Q, \Sigma, \delta, q_0, F)$ accepts a string $w = w_1w_2 \cdots w_n \in \Sigma^*$ (where each $w_i \in \Sigma$) if there exist $r_0, \ldots, r_n \in Q$ such that

1. $r_0 = q_0$
2. $\delta(r_i, w_{i+1}) = r_{i+1}$ for each $i = 0, \ldots, n - 1$, and
3. $r_n \in F$

$L(M) =$ the language of machine M

= set of all (finite) strings machine M accepts

M recognizes the language $L(M)$
Example: Computing with the Parity DFA

A DFA $M = (Q, \Sigma, \delta, q_0, F)$ accepts a string $w = w_1 w_2 \cdots w_n \in \Sigma^*$ (where each $w_i \in \Sigma$) if there exist $r_0, \ldots, r_n \in Q$ such that

$\begin{align*}
 r_0 &= q_0 \\
 r_1 &= \delta(r_0, w_1) \\
 r_2 &= \delta(r_1, w_2) \\
 \vdots & \quad \ddots \\
 r_n &= \delta(r_{n-1}, w_n) \\
 r_n &\in F
\end{align*}$

1. $r_0 = q_0$
2. $\delta(r_i, w_{i+1}) = r_{i+1}$ for each $i = 0, \ldots, n - 1$, and
3. $r_n \in F$

Let $w = abba$
Does M accept w?
Automata Tutor

http://automatatutor.com/
Regular Languages

Definition: A language is **regular** if it is recognized by a DFA

\[
L = \{ w \in \{a, b\}^* \mid w \text{ has an even number of } a's \} \text{ is regular}
\]

\[
L = \{ w \in \{0, 1\}^* \mid w \text{ contains } 001 \} \text{ is regular}
\]

Many interesting programs recognize regular languages

- NETWORK PROTOCOLS
- COMPILERS
- GENETIC TESTING
- ARITHMETIC
Let $\text{TCPS} = \{w \mid w \text{ is a complete TCP Session}\}$

Theorem. TCPS is regular
Comments:

Are delimited by /* */
Cannot have nested /* */
Must be closed by */
/*/ is illegal outside a comment

COMMENTS = {strings over {0,1, /, *}} with legal comments

Theorem. **COMMENTS** is regular.
Genetic Testing

DNA sequences are strings over the alphabet \(\{A, C, G, T\}\).

\[
S = \text{CGTACAAAAA}
\]

A gene \(g\) is a special substring over this alphabet.

\[
g = \text{TAC}
\]

A genetic test searches a DNA sequence for a gene.

Is TAC a substring of \(S\)?

\[
\text{GENETICTEST}_g = \{\text{strings over } \{A, C, G, T\} \text{ containing } g \text{ as a substring}\}
\]

\[
S \in \text{GENETICTEST}_g
\]

Theorem. GENETICTEST\(_g\) is regular for every gene \(g\).
Arithmetic

\[\text{LET } \Sigma_3 = \{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \end{bmatrix} \} \]

- A string over \(\Sigma_3 \) has three ROWS (ROW\(_1\), ROW\(_2\), ROW\(_3\))
- Each ROW \(b_0 b_1 b_2 \ldots b_N \) represents the integer \(b_0 + 2b_1 + \ldots + 2^N b_N \).
- Let ADD = \{ \(S \in \Sigma_3^* \mid \text{ROW}_1 + \text{ROW}_2 = \text{ROW}_3 \) \}

Theorem. ADD is regular.
Regular Operations
An Analogy

In algebra, we try to identify operations which are common to many different mathematical structures.

Example: The integers $\mathbb{Z} = \{ ... -2, -1, 0, 1, 2, ... \}$ are closed under:

- Addition: $x + y$
- Multiplication: $x \times y$
- Negation: $-x$
- ...but NOT Division: $x \div y$

We'd like to investigate similar closure properties of the class of regular languages.

\[x = 1 \quad y = 2 \quad \frac{x}{y} = \frac{1}{2} \]
Regular operations on languages

Let $A, B \subseteq \Sigma^*$ be languages. Define

Union: $A \cup B = \{ w \in \Sigma^* | w \in A \text{ or } w \in B \}$

Concatenation: $A \circ B = \{ wv \in \Sigma^* | w \in A \text{ and } v \in B \}$

Star: $A^* = \{ w_1 w_2 \ldots w_n | w_i \in A, i = 1, \ldots, n, n \geq 0 \}$

$= \Sigma^* \cup A \cup A A \cup A A A \cup \ldots $
Other operations

Let $A, B \subseteq \Sigma^*$ be languages. Define

Complement: $\overline{A} = \{w \in \Sigma^* \mid w \notin A\}$

Intersection: $A \cap B = \{w \in \Sigma^* \mid w \in A \text{ and } w \in B\}$

Reverse: $A^R = \{w_1w_2\ldots w_n \mid w_nw_{n-1}\ldots w_2w_1 \in A\}$
Closure properties of the regular languages

Theorem: The class of regular languages is closed under all three regular operations (union, concatenation, star), as well as under complement, intersection, and reverse.

i.e., if A and B are regular, applying any of these operations yields a regular language.
Proving Closure Properties
Complement

Complement: $\bar{A} = \{ w \mid w \not\in A \}$

Theorem: If A is regular, then \bar{A} is also regular

Proof idea:
Union

Union: \(A \cup B = \{ w \mid w \in A \text{ or } w \in B \} \)

Theorem: If \(A \) and \(B \) are regular, then so is \(A \cup B \)

Proof:

Let \(M_A = (Q_A, \Sigma, \delta_A, q_0^A, F_A) \) be a DFA recognizing \(A \) and \(M_B = (Q_B, \Sigma, \delta_B, q_0^B, F_B) \) be a DFA recognizing \(B \).

Goal: Construct a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) that recognizes \(A \cup B \)
Example

\[M = ? \]
Closure under union proof (cont’d)

Idea: Run both M_A and M_B at the same time

“Cross-product construction”

\[
Q = Q_A \times Q_B \\
= \{ (q_A, q_B) \mid q_A \in A \text{ and } q_B \in B \}
\]

\[
\delta((q_A, q_B), \sigma) = (\delta_A(q_A, \sigma), \delta_B(q_B, \sigma))
\]

\[
q_0 = (q_0^A, q_0^B)
\]

\[
F = \{ (q_A, q_B) \mid q_A \in F_A \text{ or } q_B \in F_B \}
\]

\[
= F_A \times Q_B \cup Q_A \times F_B
\]
Example (cont’d)
Intersection

Intersection: $A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$

Theorem: If A and B are regular, then so is $A \cap B$

Proof:

Let $M_A = (Q_A, \Sigma, \delta_A, q_0^A, F_A)$ be a DFA recognizing A and $M_B = (Q_B, \Sigma, \delta_B, q_0^B, F_B)$ be a DFA recognizing B.

Goal: Construct a DFA $M = (Q, \Sigma, \delta, q_0, F)$ that recognizes $A \cap B$.

Modification using construction
Intersection

Intersection: \(A \cap B = \{ w \mid w \in A \text{ and } w \in B \} \)

Theorem: If \(A \) and \(B \) are regular, then so is \(A \cap B \)

Another Proof:

\[
A \cap B = \overline{A} \cup \overline{B}
\]
Reverse

Reverse: $A^R = \{w_1w_2\ldots w_n | w_n\ldots w_1 \in A\}$

Theorem: If A is regular, then A^R is also regular

Proof idea:

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing A

Goal: Construct a DFA $M' = (Q', \Sigma, \delta', q'_0, F')$ that recognizes A^R

Define M' as M but

- With the arrows reversed
- With start and accept states swapped
Example (Reverse)

Diagram:

- **M:**
 - Transition: 1
 - States:
 - Initial State: \(\overrightarrow{\text{Initial State}} \)
 - Transitions:
 - 0: \(\overrightarrow{\text{State A}} \)
 - 1: \(\overrightarrow{\text{State B}} \)
 - Final State: \(\overrightarrow{\text{Final State}} \)

- **M':**
 - Transition: 0, 1
 - States:
 - Initial State: \(\overrightarrow{\text{Initial State}} \)
 - Transitions:
 - 0: \(\overrightarrow{\text{State A}} \)
 - 1: \(\overrightarrow{\text{State B}} \)
 - Final State: \(\overrightarrow{\text{Final State}} \)
Closure under reverse

M' is not always a DFA!

- It might have many start states
- Some states may have too many outgoing edges, or none at all
A **Nondeterministic Finite Automaton** (NFA) accepts if there is a way to make it reach an accept state.