Lecture 2:

• Deterministic Finite Automata
• Regular Operations
• Non-deterministic FAs

Reading:
Sipser Ch 1.1-1.2

Mark Bun
January 27, 2020
Deterministic Finite Automata
A (Real-Life?) Example

• **Example:** Car stereo

• $P =$ Power button (ON/OFF)

• $S =$ Source button (cycles through Radio/Bluetooth/USB)

 Only works when stereo is ON, but source remembered when stereo is OFF

• Starts OFF in Radio mode

• **A computational problem:** Does a sequence of button presses in \(\{P, S\}^* \) leave the stereo ON in USB mode?
Machine Models

- **Finite Automata (FAs):** Machine with a finite amount of unstructured memory

<table>
<thead>
<tr>
<th>P</th>
<th>S</th>
<th>P</th>
<th>S</th>
<th>...</th>
</tr>
</thead>
</table>

Control scans left-to-right

"State diagram"

- Different states control can be in
- How transitions between states
- How it decides to accept or reject
A DFA for the car stereo problem

[Diagram showing a DFA with states labeled 'ON R', 'OFF R', 'ON B', 'OFF B', and 'OFF U', with transitions labeled 'S' between states.]
A DFA for Parity

Parity: Given a string consisting of a’s and b’s, does it contain an even number of a’s?

$\Sigma = \{a, b\} \quad L = \{w \mid w \text{ contains an even number of } a\’s\}$
Anatomy of a DFA

- States
- Transitions
- Accepting or final states

q_0, q_1, q_2, q_3
Formal Definition of a DFA

A finite automaton is a 5-tuple \(M = (Q, \Sigma, \delta, q_0, F) \)

- \(Q \) is the set of states
- \(\Sigma \) is the alphabet
- \(\delta : Q \times \Sigma \rightarrow Q \) is the transition function
- \(q_0 \in Q \) is the start state
- \(F \subseteq Q \) is the set of accept states
A DFA for Parity

Parity: Given a string consisting of a’s and b’s, does it contain an even number of a’s?

$\Sigma = \{a, b\}$ \hspace{1cm} $L = \{w \mid w$ contains an even number of a’s\}

State set $Q = \{q_0, q_1, q_2\}$

Alphabet $\Sigma = \{a, b\}$

Transition function δ

<table>
<thead>
<tr>
<th>δ</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>q_1</td>
<td>q_0</td>
</tr>
<tr>
<td>q_1</td>
<td>q_1</td>
<td>q_0</td>
</tr>
</tbody>
</table>

Start state q_0

Set of accept states $F = \{q_0, q_2\}$
Formal Definition of DFA Computation

A DFA \(M = (Q, \Sigma, \delta, q_0, F) \) accepts a string \(w = w_1 w_2 \cdots w_n \in \Sigma^* \) (where each \(w_i \in \Sigma \)) if there exist \(r_0, \ldots, r_n \in Q \) such that

1. \(r_0 = q_0 \)
2. \(\delta(r_i, w_{i+1}) = r_{i+1} \) for each \(i = 0, \ldots, n - 1 \), and
3. \(r_n \in F \)

\[L(M) = \text{the language of machine } M \]
\[= \text{set of all (finite) strings machine } M \text{ accepts} \]
\(M \text{ recognizes the language } L(M) \)
Example: Computing with the Parity DFA

A DFA $M = (Q, \Sigma, \delta, q_0, F)$ accepts a string $w = w_1w_2 \cdots w_n \in \Sigma^*$ (where each $w_i \in \Sigma$) if there exist $r_0, \ldots, r_n \in Q$ such that

1. $r_0 = q_0$
2. $\delta(r_i, w_{i+1}) = r_{i+1}$ for each $i = 0, \ldots, n - 1$, and
3. $r_n \in F$

Let $w = abba$
Does M accept w?
Automata Tutor

http://automatatutor.com/
Regular Languages

Definition: A language is **regular** if it is recognized by a DFA

\[L = \{ w \in \{a, b\}^* \mid w \text{ has an even number of } a's \} \text{ is regular} \]
\[L = \{ w \in \{0, 1\}^* \mid w \text{ contains 001} \} \text{ is regular} \]

Many interesting programs recognize regular languages

NETWORK PROTOCOLS
COMPILERS
GENETIC TESTING
ARITHMETIC
Let $\text{TCPS} = \{w \mid w \text{ is a complete TCP Session}\}$

Theorem. TCPS is regular
Comments:

Are delimited by /* */
Cannot have nested /* */
Must be closed by */
*/ is illegal outside a comment

Comments = \{strings over \{0,1, /, *\} with legal comments\}

Theorem. Comments is regular.
Genetic Testing

DNA sequences are strings over the alphabet \{A, C, G, T\}.

$$S = C G T A C A A A A A$$

A **gene** g is a special substring over this alphabet.

$$g = T A C$$

A **genetic test** searches a DNA sequence for a gene.

Is $T A C$ a substring of S?

GENETICTEST$_g$ = \{strings over \{A, C, G, T\} containing g as a substring\}

$$S \in \text{GENETICTEST}_g$$

Theorem. **GENETICTEST**$_g$ is regular for every gene g.
Arithmetic

LET \(\Sigma_3 = \{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \} \)

• A string over \(\Sigma_3 \) has three ROWS (ROW\(_1\), ROW\(_2\), ROW\(_3\))
• Each ROW \(b_0b_1b_2 \ldots b_N \) represents the integer
 \[b_0 + 2b_1 + \ldots + 2^Nb_N. \]
• Let ADD = \(\{ S \in \Sigma_3^* \mid \text{ROW}_1 + \text{ROW}_2 = \text{ROW}_3 \} \)

Theorem. ADD is regular.
Regular Operations
An Analogy

In algebra, we try to identify operations which are common to many different mathematical structures

Example: The integers $\mathbb{Z} = \{... -2, -1, 0, 1, 2, ... \}$ are **closed** under
- Addition: $x + y$
- Multiplication: $x \times y$
- Negation: $-x$
- ...but **NOT** Division: x / y \[x = 1, \ y = 2 \quad x / y = \frac{1}{2} \]

We’d like to investigate similar closure properties of the class of regular languages
Regular operations on languages

Let $A, B \subseteq \Sigma^*$ be languages. Define

Union: $A \cup B = \{ w \in \Sigma^* | w \in A \text{ or } w \in B \}$

Concatenation: $A \circ B = \{ wv | w \in A \text{ and } v \in B \}$

Star: $A^* = \{ w_1w_2 \ldots w_n | w_i \in A, i = 1, \ldots, n, n \geq 0 \}$

$= \varepsilon^* \cup A \cup AA \cup AAA \cup \ldots$
Other operations

Let $A, B \subseteq \Sigma^*$ be languages. Define

Complement: $\bar{A} = \{w \in \Sigma^* | w \notin A\}$

Intersection: $A \cap B = \{w \in \Sigma^* | w \in A \text{ and } w \in B\}$

Reverse: $A^R = \{w_1 w_2 \ldots w_n | w_n w_{n-1} \ldots w_2 w_1 \in A\}$
Closure properties of the regular languages

Theorem: The class of regular languages is closed under all three regular operations (union, concatenation, star), as well as under complement, intersection, and reverse.

i.e., if A and B are regular, applying any of these operations yields a regular language
Proving Closure Properties
Complement

Complement: $\tilde{A} = \{ w | w \notin A \}$

Theorem: If A is regular, then \tilde{A} is also regular

Proof idea:
Union

Union: \(A \cup B = \{ w \mid w \in A \text{ or } w \in B \} \)

Theorem: If \(A \) and \(B \) are regular, then so is \(A \cup B \)

Proof:

Let \(M_A = (Q_A, \Sigma, \delta_A, q_0^A, F_A) \) be a DFA recognizing \(A \) and \(M_B = (Q_B, \Sigma, \delta_B, q_0^B, F_B) \) be a DFA recognizing \(B \).

Goal: Construct a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) that recognizes \(A \cup B \).
Example

\[M = ? \]
Closure under union proof (cont’d)

Idea: Run both M_A and M_B at the same time

“Cross-product construction”

\[Q = Q_A \times Q_B = \{(q_A, q_B) \mid q_A \in A \text{ and } q_B \in B\} \]

\[\delta ((q_A, q_B), \sigma) = (\delta_A(q_A,\sigma), \delta_B(q_B,\sigma)) \]

\[q_0 = (q_0^A, q_0^B) \]

\[F = \{(q_A, q_B) \mid q_A \in F_A \text{ or } q_B \in F_B\} = F_A \times Q_B \cup Q_A \times F_B \]
Example (cont’d)

M_A

M_B

M

$q_0^A \xleftrightarrow{0} q_1^A$

$q_0^A \xleftrightarrow{1} q_1^A$

$q_0^B \xleftrightarrow{1} q_1^B$

$q_0^B \xleftrightarrow{0} q_1^B$

$q_0 \xleftrightarrow{a, b} q_1$
Intersection

Intersection: \(A \cap B = \{ w \mid w \in A \text{ and } w \in B \} \)

Theorem: If \(A \) and \(B \) are regular, then so is \(A \cap B \)

Proof:

Let \(M_A = (Q_A, \Sigma, \delta_A, q_0^A, F_A) \) be a DFA recognizing \(A \) and \(M_B = (Q_B, \Sigma, \delta_B, q_0^B, F_B) \) be a DFA recognizing \(B \)

Goal: Construct a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) that recognizes \(A \cap B \)
Intersection

Intersection: $A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$

Theorem: If A and B are regular, then so is $A \cap B$

Another Proof:

$$A \cap B = \overline{A} \cup \overline{B}$$
Reverse

Reverse: \(A^R = \{ w_1w_2 \cdots w_n | w_n \cdots w_1 \in A \} \)

Theorem: If \(A \) is regular, then \(A^R \) is also regular

Proof idea:

Let \(M = (Q, \Sigma, \delta, q_0, F) \) be a DFA recognizing \(A \)

Goal: Construct a DFA \(M' = (Q', \Sigma, \delta', q'_0, F') \) that recognizes \(A^R \)

Define \(M' \) as \(M \) but

- With the arrows reversed
- With start and accept states swapped
Example (Reverse)

\[M \]

\[M' \]
Closure under reverse

\(M' \) is not always a DFA!

- It might have many start states
- Some states may have too many outgoing edges, or none at all

1/27/2020 CS332 - Theory of Computation 33
Nondeterminism

A **Nondeterministic Finite Automaton** (NFA) accepts if there is a way to make it reach an accept state.