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Deterministic Finite 
Automata
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A (Real-Life?) Example

• Example: Car stereo

• 𝑃 = Power button (ON/OFF)

• 𝑆 = Source button (cycles through Radio/Bluetooth/USB)
Only works when stereo is ON, but source remembered when 
stereo is OFF

• Starts OFF in Radio mode

• A computational problem: Does a sequence of button 
presses in {𝑃, 𝑆}∗ leave the stereo ON in USB mode?
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Machine Models

• Finite Automata (FAs): Machine with a finite amount of 
unstructured memory
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A DFA for the car stereo problem
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A DFA for Parity

Parity: Given a string consisting of 𝑎’s and 𝑏’s, does 
it contain an even number of 𝑎’s?

Ʃ = {𝑎, 𝑏} 𝐿 = {𝑤 | 𝑤 contains an even number of 𝑎’s}
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Anatomy of a DFA
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Formal Definition of a DFA
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𝑄 is the set of states

Σ is the alphabet

 ∶ 𝑄 × Σ → 𝑄 is the transition function

𝑞0  𝑄 is the start state

𝐹 ⊆ 𝑄 is the set of accept states

A finite automaton is a 5-tuple 𝑀 = (𝑄, Σ, , 𝑞0, 𝐹)



A DFA for Parity

Parity: Given a string consisting of 𝑎’s and 𝑏’s, does 
it contain an even number of 𝑎’s?

Ʃ = {𝑎, 𝑏} 𝐿 = {𝑤 | 𝑤 contains an even number of 𝑎’s}
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Formal Definition of DFA Computation
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𝐿(𝑀) = the language of machine 𝑀
= set of all (finite) strings machine 𝑀 accepts

𝑀 recognizes the language 𝐿(𝑀)

A DFA 𝑀 = (𝑄, Σ, , 𝑞0, 𝐹) accepts a string 
𝑤 = 𝑤1𝑤2 · · · 𝑤𝑛 ∈ Σ∗ (where each 𝑤𝑖 ∈ Σ) if there exist 
𝑟0, . . . , 𝑟𝑛 ∈ 𝑄 such that 

1. 𝑟0 = 𝑞0
2. 𝛿(𝑟𝑖 , 𝑤𝑖+1) = 𝑟𝑖+1 for each 𝑖 = 0, . . . , 𝑛 − 1, and
3.   𝑟𝑛 ∈ 𝐹



Example: Computing with the Parity DFA
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𝑞0 𝑞1

𝑏 𝑏

𝑎

𝑎

A DFA 𝑀 = (𝑄, Σ, , 𝑞0, 𝐹) accepts a string 
𝑤 = 𝑤1𝑤2 · · · 𝑤𝑛 ∈ Σ∗ (where each 𝑤𝑖 ∈ Σ) if there exist 
𝑟0, . . . , 𝑟𝑛 ∈ 𝑄 such that 

1. 𝑟0 = 𝑞0
2. 𝛿(𝑟𝑖 , 𝑤𝑖+1) = 𝑟𝑖+1 for each 𝑖 = 0, . . . , 𝑛 − 1, and
3.   𝑟𝑛 ∈ 𝐹

Let 𝑤 = 𝑎𝑏𝑏𝑎
Does 𝑀 accept 𝑤?



Automata Tutor

1/26/2020 CS332 - Theory of Computation 12

http://automatatutor.com/

http://automatatutor.com/


Regular Languages
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Definition: A language is regular if it is recognized by a DFA

𝑳 = { 𝒘 ∈ 𝟎, 𝟏 ∗| 𝒘 contains 𝟎𝟎𝟏 } is regular

𝑳 = { 𝒘 ∈ 𝒂, 𝒃 ∗ | 𝒘 has an even number of 𝒂’s } is regular

Many interesting programs recognize regular languages

NETWORK PROTOCOLS

COMPILERS

GENETIC TESTING

ARITHMETIC



Internet Transmission Control Protocol
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Let TCPS = { 𝑤 | 𝑤 is a complete TCP Session}
Theorem. TCPS is regular



Compilers
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Comments :

Are delimited by /* */

Cannot have nested /* */

Must be closed by */

*/ is illegal outside a comment

COMMENTS = {strings over {0,1, /, *} with legal comments}

Theorem. COMMENTS is regular.



Genetic Testing
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DNA sequences are strings over the alphabet {𝑨, 𝑪, 𝑮, 𝑻}.

A gene 𝒈 is a special substring over this alphabet.

A genetic test searches a  DNA sequence for a gene.

GENETICTEST𝒈 = {strings over {𝑨, 𝑪, 𝑮, 𝑻} containing 𝒈 as a substring}

Theorem. GENETICTEST𝒈 is regular for every gene 𝒈.



Arithmetic
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LET 3 = 

• A string over 3 has three ROWS  (ROW1, ROW2, ROW3)

• Each ROW 𝒃𝟎𝒃𝟏𝒃𝟐…𝒃𝑵 represents the integer 

𝒃𝟎 + 𝟐𝒃𝟏 + … + 𝟐𝑵𝒃𝑵.

• Let ADD = {𝑺 ∈ 𝟑
∗ | ROW1 + ROW2 = ROW3 } 

Theorem. ADD is regular.

{ [ ],[ ],[ ],[ ],
[ ],[ ],[ ],[ ]}
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0
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1
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1
1
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Regular Operations
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An Analogy

In algebra, we try to identify operations which are 
common to many different mathematical structures
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Example: The integers ℤ = {…− 2,−1, 0, 1, 2, … } are 
closed under
• Addition: 𝑥 + 𝑦
• Multiplication: 𝑥 × 𝑦
• Negation: −𝑥
• …but NOT Division: 𝑥 / 𝑦

We’d like to investigate similar closure properties of the 
class of regular languages



Regular operations on languages
Let 𝐴, 𝐵 ⊆ Σ∗ be languages. Define

Union: 𝐴 ∪ 𝐵 =

Concatenation: 𝐴 ∘ 𝐵 =

Star: 𝐴∗ =
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Other operations
Let 𝐴, 𝐵 ⊆ Σ∗ be languages. Define

Complement: ҧ𝐴 =

Intersection: 𝐴 ∩ 𝐵 =

Reverse: 𝐴𝑅 =
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Closure properties of the regular languages

Theorem: The class of regular languages is closed under 
all three regular operations (union, concatenation, star), 
as well as under complement, intersection, and reverse.

i.e., if 𝐴 and 𝐵 are regular, applying any of these 
operations yields a regular language
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Proving Closure Properties
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Complement

Complement: ҧ𝐴 = 𝑤 𝑤 ∉ 𝐴}

Theorem: If 𝐴 is regular, then ҧ𝐴 is also regular

Proof idea:
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Union
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Union: 𝐴 ∪ 𝐵 = 𝑤 𝑤 ∈ 𝐴 or 𝑤 ∈ 𝐵}

Theorem: If 𝐴 and 𝐵 are regular, then so is 𝐴 ∪ 𝐵

Proof:

Let  𝑀𝐴 = (𝑄𝐴, Σ, 𝐴, 𝑞0
𝐴, 𝐹𝐴) be a DFA recognizing 𝐴 and 

𝑀𝐵 = (𝑄𝐵, Σ, 𝐵, 𝑞0
𝐵 , 𝐹𝐵) be a DFA recognizing 𝐵

Goal: Construct a DFA 𝑀 = 𝑄, Σ, , 𝑞0, 𝐹

that recognizes 𝐴 ∪ 𝐵



Example
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𝑞0
𝐴 𝑞1

𝐴

0
0

1

1
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𝐵
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1
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Closure under union proof (cont’d)

Idea: Run both 𝑀𝐴 and 𝑀𝐵 at the same time

“Cross-product construction”

𝑄 = 𝑄𝐴 × 𝑄𝐵

= {(𝑞𝐴, 𝑞𝐵) |𝑞𝐴 ∈ 𝐴 and 𝑞𝐵 ∈ 𝐵}

( (𝑞𝐴, 𝑞𝐵),) = (𝐴(𝑞𝐴,), 𝐵(𝑞𝐵,))

𝑞0 = (𝑞0
𝐴, 𝑞0

𝐵)

𝐹 = {(𝑞𝐴, 𝑞𝐵) |𝑞𝐴 ∈ 𝐹𝐴 or 𝑞𝐵 ∈ 𝐹𝐵}

= 𝐹𝐴 × 𝑄𝐵 ∪ 𝑄𝐴 × 𝐹𝐵
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Example (cont’d)
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Intersection
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Intersection: 𝐴 ∩ 𝐵 = 𝑤 𝑤 ∈ 𝐴 and 𝑤 ∈ 𝐵}

Theorem: If 𝐴 and 𝐵 are regular, then so is 𝐴 ∩ 𝐵

Proof:

Let  𝑀𝐴 = (𝑄𝐴, Σ, 𝐴, 𝑞0
𝐴, 𝐹𝐴) be a DFA recognizing 𝐴 and 

𝑀𝐵 = (𝑄𝐵, Σ, 𝐵, 𝑞0
𝐵 , 𝐹𝐵) be a DFA recognizing 𝐵

Goal: Construct a DFA 𝑀 = 𝑄, Σ, , 𝑞0, 𝐹

that recognizes 𝐴 ∩ 𝐵



Intersection
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Intersection: 𝐴 ∩ 𝐵 = 𝑤 𝑤 ∈ 𝐴 and 𝑤 ∈ 𝐵}

Theorem: If 𝐴 and 𝐵 are regular, then so is 𝐴 ∩ 𝐵

Another Proof:

𝐴 ∩ 𝐵 = ҧ𝐴 ∪ ത𝐵



Reverse
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Reverse: 𝐴𝑅 = 𝑤1𝑤2 · · · 𝑤𝑛 𝑤𝑛 · · · 𝑤1 ∈ 𝐴}

Theorem: If 𝐴 is regular, then 𝐴𝑅 is also regular

Proof idea:

Let  𝑀 = (𝑄, Σ, , 𝑞0, 𝐹) be a DFA recognizing 𝐴

Goal: Construct a DFA 𝑀′ = 𝑄′, Σ, ′, 𝑞0
′ , 𝐹′

that recognizes 𝐴𝑅

Define 𝑀′ as 𝑀 but 

• With the arrows reversed

• With start and accept states swapped



Example (Reverse)
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Closure under reverse

𝑀’ is not always a DFA!

• It might have many start states

• Some states may have too many outgoing edges, or 
none at all
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Nondeterminism
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1 0

1

0 1

0,1

0

A Nondeterministic Finite Automaton (NFA) accepts if 

there is a way to make it reach an accept state.



Example

1/26/2020 CS332 - Theory of Computation 35

1

0

0

𝑳(𝑴) =

𝜺

𝜺



Example
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Formal Definition of a NFA
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𝑄 is the set of states

Σ is the alphabet

 ∶ 𝑄 × Σ𝜀 → 𝑃(𝑄) is the transition function

𝑞0  𝑄 is the start state

𝐹 ⊆ 𝑄 is the set of accept states

An NFA is a 5-tuple 𝑀 = (𝑄, Σ, , 𝑞0, 𝐹)

𝑀 accepts a string 𝑤 if there exists a path from 𝑞0 to 
an accept state that can be followed by reading 𝑤.



Example
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1

0

0
𝜺

𝜺

(𝒒𝟑, 𝟏) =

𝑴 = (𝑸, 𝚺, , 𝑸𝟎, 𝑭)

𝑸 = {𝒒𝟎,𝒒𝟏, 𝒒𝟐, 𝒒𝟑, 𝒒𝟒}

𝚺 = {𝟎, 𝟏}

𝑭 = {𝒒𝟒}

(𝒒𝟐, 𝟏) =

𝒒𝟏

𝒒𝟐

𝒒𝟑

𝒒𝟒

𝒒𝟎



Example
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0,1

0,𝜺 1

0,1

1
𝒒𝟏 𝒒𝟐 𝒒𝟑𝒒𝟎

𝑵 = (𝑸, 𝚺, , 𝒒𝟎, 𝑭)

𝑸 = {𝒒𝟎,𝒒𝟏, 𝒒𝟐, 𝒒𝟑}

𝚺 = {𝟎, 𝟏}

𝑭 = {𝒒𝟑}

(𝒒𝟎, 𝟏) =

(𝒒𝟐, 𝟎) =

(𝒒𝟎, 𝟎) =

(𝒒𝟏, 𝜺) =



Nondeterminism
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Ways to think about 
nondeterminism

• (restricted) 
parallel 
computation

• tree of possible 
computations

• guessing and 
verifying the 
“right” choice

Deterministic

Computation
Nondeterministic

Computation

accept or reject accept

reject


