Lecture 2:

• Deterministic Finite Automata
• Regular Operations
• Non-deterministic FAs

Reading:

Sipser Ch 1.1-1.2

Mark Bun
January 27, 2020
Deterministic Finite Automata
A (Real-Life?) Example

• **Example:** Car stereo

• \(P = \) Power button (ON/OFF)

• \(S = \) Source button (cycles through Radio/Bluetooth/USB)

 Only works when stereo is ON, but source remembered when stereo is OFF

• Starts OFF in Radio mode

• **A computational problem:** Does a sequence of button presses in \(\{P, S\}^* \) leave the stereo ON in USB mode?
Machine Models

• **Finite Automata (FAs):** Machine with a finite amount of unstructured memory

Input

\[
\begin{array}{cccc}
 P & S & P & S & \ldots \\
\end{array}
\]

Finite control

Control scans left-to-right
A DFA for the car stereo problem
A DFA for Parity

Parity: Given a string consisting of a’s and b’s, does it contain an even number of a’s?

$\Sigma = \{a, b\} \quad L = \{w \mid w \text{ contains an even number of } a \text{'s}\}$
Anatomy of a DFA
Formal Definition of a DFA

A finite automaton is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

- Q is the set of states
- Σ is the alphabet
- $\delta : Q \times \Sigma \to Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states
A DFA for Parity

Parity: Given a string consisting of a’s and b’s, does it contain an even number of a’s?

$\Sigma = \{a, b\}$ \hspace{1cm} $L = \{w \mid w \text{ contains an even number of } a\’s\}$

State set $Q =$

Alphabet $\Sigma =$

Transition function δ

<table>
<thead>
<tr>
<th>δ</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Start state q_0

Set of accept states $F =$
Formal Definition of DFA Computation

A DFA $M = (Q, \Sigma, \delta, q_0, F)$ accepts a string $w = w_1w_2 \cdots w_n \in \Sigma^*$ (where each $w_i \in \Sigma$) if there exist $r_0, \ldots, r_n \in Q$ such that

1. $r_0 = q_0$
2. $\delta(r_i, w_{i+1}) = r_{i+1}$ for each $i = 0, \ldots, n - 1$, and
3. $r_n \in F$

$L(M) = \text{the language of machine } M$

$= \text{set of all (finite) strings machine } M \text{ accepts}$

$M \text{ recognizes the language } L(M)$
Example: Computing with the Parity DFA

A DFA $M = (Q, \Sigma, \delta, q_0, F)$ accepts a string $w = w_1w_2 \cdots w_n \in \Sigma^*$ (where each $w_i \in \Sigma$) if there exist $r_0, \ldots, r_n \in Q$ such that

1. $r_0 = q_0$
2. $\delta(r_i, w_{i+1}) = r_{i+1}$ for each $i = 0, \ldots, n - 1$, and
3. $r_n \in F$

Let $w = abba$

Does M accept w?
Automata Tutor

http://automatatutor.com/
Regular Languages

Definition: A language is **regular** if it is recognized by a DFA

\[
L = \{ w \in \{a, b\}^* \mid w \text{ has an even number of } a's \} \text{ is regular}
\]

\[
L = \{ w \in \{0, 1\}^* \mid w \text{ contains } 001 \} \text{ is regular}
\]

Many interesting programs recognize regular languages

- **NETWORK PROTOCOLS**
- **COMPILERS**
- **GENETIC TESTING**
- **ARITHMETIC**
Let \(\text{TCPS} = \{ w \mid w \text{ is a complete TCP Session} \} \)

Theorem. TCPS is regular
Comments:

- Are delimited by /* */
- Cannot have nested /* */
- Must be closed by */
- */ is illegal outside a comment

\[\text{COMMENTS} = \{\text{strings over \{0,1, /, *\} with legal comments}\}\]

Theorem. **COMMENTS** is regular.
Genetic Testing

DNA sequences are strings over the alphabet \{A, C, G, T\}.

A **gene** \(g\) is a special substring over this alphabet.

A **genetic test** searches a DNA sequence for a gene.

\[GENETICTEST_g = \{\text{strings over } \{A, C, G, T\} \text{ containing } g \text{ as a substring}\}\]

Theorem. \(GENETICTEST_g\) is regular for every gene \(g\).
Arithmetic

\[
\text{LET } \Sigma_3 = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}
\]

- A string over \(\Sigma_3 \) has three ROWS (ROW_1, ROW_2, ROW_3)
- Each ROW \(b_0 b_1 b_2 \ldots b_N \) represents the integer \(b_0 + 2b_1 + \ldots + 2^N b_N \).
- Let ADD = \(\{ S \in \Sigma_3^* \mid \text{ROW}_1 + \text{ROW}_2 = \text{ROW}_3 \} \)

\textbf{Theorem. } ADD is regular.
Regular Operations
An Analogy

In algebra, we try to identify operations which are common to many different mathematical structures.

Example: The integers $\mathbb{Z} = \{ ... -2, -1, 0, 1, 2, ... \}$ are closed under:

- Addition: $x + y$
- Multiplication: $x \times y$
- Negation: $-x$
- ...but **NOT** Division: x / y

We’d like to investigate similar closure properties of the class of regular languages.
Regular operations on languages

Let $A, B \subseteq \Sigma^*$ be languages. Define

Union: $A \cup B =$

Concatenation: $A \circ B =$

Star: $A^* =$
Other operations

Let $A, B \subseteq \Sigma^*$ be languages. Define

Complement: $\overline{A} =$

Intersection: $A \cap B =$

Reverse: $A^R =$
Closure properties of the regular languages

Theorem: The class of regular languages is closed under all three regular operations (union, concatenation, star), as well as under complement, intersection, and reverse.

i.e., if A and B are regular, applying any of these operations yields a regular language.
Proving Closure Properties
Complement

Complement: $\overline{A} = \{ w \mid w \notin A \}$

Theorem: If A is regular, then \overline{A} is also regular

Proof idea:
Union

Union: \(A \cup B = \{ w \mid w \in A \text{ or } w \in B \} \)

Theorem: If \(A \) and \(B \) are regular, then so is \(A \cup B \)

Proof:

Let \(M_A = (Q_A, \Sigma, \delta_A, q_0^A, F_A) \) be a DFA recognizing \(A \) and \(M_B = (Q_B, \Sigma, \delta_B, q_0^B, F_B) \) be a DFA recognizing \(B \).

Goal: Construct a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) that recognizes \(A \cup B \).
Example

\[M = ? \]
Closure under union proof (cont’d)

Idea: Run both M_A and M_B at the same time

“Cross-product construction”

\[
Q = Q_A \times Q_B = \{(q_A, q_B) \mid q_A \in A \text{ and } q_B \in B\}
\]

\[
\delta((q_A, q_B), \sigma) = (\delta_A(q_A, \sigma), \delta_B(q_B, \sigma))
\]

\[
q_0 = (q_0^A, q_0^B)
\]

\[
F = \{(q_A, q_B) \mid q_A \in F_A \text{ or } q_B \in F_B\} = F_A \times Q_B \cup Q_A \times F_B
\]
Example (cont’d)
Intersection

Intersection: \(A \cap B = \{ w \mid w \in A \text{ and } w \in B \} \)

Theorem: If \(A \) and \(B \) are regular, then so is \(A \cap B \)

Proof:

Let \(M_A = (Q_A, \Sigma, \delta_A, q_0^A, F_A) \) be a DFA recognizing \(A \) and \(M_B = (Q_B, \Sigma, \delta_B, q_0^B, F_B) \) be a DFA recognizing \(B \)

Goal: Construct a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) that recognizes \(A \cap B \)
Intersection

Intersection: \(A \cap B = \{ w \mid w \in A \text{ and } w \in B \} \)

Theorem: If \(A \) and \(B \) are regular, then so is \(A \cap B \)

Another Proof:

\[
A \cap B = \overline{A} \cup \overline{B}
\]
Reverse

Reverse: $A^R = \{w_1w_2 \cdots w_n | w_n \cdots w_1 \in A\}$

Theorem: If A is regular, then A^R is also regular

Proof idea:

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing A

Goal: Construct a DFA $M' = (Q', \Sigma, \delta', q'_0, F')$ that recognizes A^R

Define M' as M but

- With the arrows reversed
- With start and accept states swapped
Example (Reverse)

\[M \]

\[M' \]
Closure under reverse

M' is not always a DFA!

- It might have many start states
- Some states may have too many outgoing edges, or none at all
A Nondeterministic Finite Automaton (NFA) accepts if there is a way to make it reach an accept state.
Example

\[L(M) = \]
Example

\[L(M) = \]

A transition diagram is shown with states labeled and transitions marked with symbols 0, 1, and \(\varepsilon \). The diagram is a sequence of states connected by arrows indicating the transition symbols.
Formal Definition of a NFA

An **NFA** is a 5-tuple \(M = (Q, \Sigma, \delta, q_0, F) \)

- \(Q \) is the set of states
- \(\Sigma \) is the alphabet
- \(\delta : Q \times \Sigma \rightarrow P(Q) \) is the transition function
- \(q_0 \in Q \) is the start state
- \(F \subseteq Q \) is the set of accept states

\(M \) accepts a string \(w \) if **there exists** a path from \(q_0 \) to an accept state that can be followed by reading \(w \).
Example

\[M = (Q, \Sigma, \delta, Q_0, F) \]
\[Q = \{ q_0, q_1, q_2, q_3, q_4 \} \]
\[\Sigma = \{ 0, 1 \} \]
\[F = \{ q_4 \} \]
\[\delta(q_2, 1) = \]
\[\delta(q_3, 1) = \]
Example

\[N = (Q, \Sigma, \delta, q_0, F) \]

\[Q = \{q_0, q_1, q_2, q_3\} \]

\[\Sigma = \{0, 1\} \]

\[F = \{q_3\} \]

\[\delta(q_0, 0) = \]

\[\delta(q_0, 1) = \]

\[\delta(q_1, \varepsilon) = \]

\[\delta(q_2, 0) = \]
Nondeterminism

Ways to think about nondeterminism
- (restricted) parallel computation
- tree of possible computations
- guessing and verifying the “right” choice

Deterministic Computation
- accept or reject

Nondeterministic Computation
- accept
- reject