BU CS 332 - Theory of Computation

Lecture 2:

- Deterministic Finite Automata

Reading:
Sipser Ch 1.1-1.2

- Regular Operations
- Non-deterministic FAs

Mark Bun
January 27, 2020

Deterministic Finite Automata

A (Real-Life?) Example

- Example: Car stereo
- $P=$ Power button (ON/OFF)
- S = Source button (cycles through Radio/Bluetooth/USB) Only works when stereo is ON, but source remembered when stereo is OFF
- Starts OFF in Radio mode
- A computational problem: Does a sequence of button presses in $\{P, S\}^{*}$ leave the stereo ON in USB mode?

Machine Models

- Finite Automata (FAs): Machine with a finite amount of unstructured memory

Input

Control scans left-to-right

A DFA for the car stereo problem

A DFA for Parity

Parity: Given a string consisting of a 's and b 's, does it contain an even number of a 's?
$\Sigma=\{a, b\} \quad L=\{w \mid w$ contains an even number of $a \prime s\}$

Anatomy of a DFA

Formal Definition of a DFA

A finite automaton is a 5-tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Q is the set of states
Σ is the alphabet
$\delta: Q \times \Sigma \rightarrow Q$ is the transition function
$q_{0} \in Q$ is the start state
$F \subseteq Q$ is the set of accept states

A DFA for Parity

Parity: Given a string consisting of a 's and b 's, does it contain an even number of a 's?
$\Sigma=\{a, b\} \quad L=\{w \mid w$ contains an even number of $a \prime s\}$

Start state q_{0}
Set of accept states $F=$

Formal Definition of DFA Computation

A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ accepts a string $w=w_{1} w_{2} \cdots w_{n} \in \Sigma^{*}$ (where each $w_{i} \in \Sigma$) if there exist $r_{0}, \ldots, r_{n} \in Q$ such that

1. $r_{0}=q_{0}$
2. $\delta\left(r_{i}, w_{i+1}\right)=r_{i+1}$ for each $i=0, \ldots, n-1$, and
3. $r_{n} \in F$
$L(M)=$ the language of machine M
= set of all (finite) strings machine M accepts
M recognizes the language $L(M)$

Example: Computing with the Parity DFA

Let $w=a b b a$
Does M accept w ?

A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ accepts a string $w=w_{1} w_{2} \cdots w_{n} \in \Sigma^{*}\left(\right.$ where each $\left.w_{i} \in \Sigma\right)$ if there exist $r_{0}, \ldots, r_{n} \in Q$ such that

1. $r_{0}=q_{0}$
2. $\delta\left(r_{i}, w_{i+1}\right)=r_{i+1}$ for each $i=0, \ldots, n-1$, and
3. $r_{n} \in F$

Automata Tutor

http://automatatutor.com/

Regular Languages

Definition: A language is regular if it is recognized by a DFA

$$
\begin{aligned}
& L=\left\{w \in\{a, b\}^{*} \mid w \text { has an even number of } a^{\prime} \text { s }\right\} \text { is regular } \\
& L=\left\{w \in\{\mathbf{0}, \mathbf{1}\}^{*} \mid w \text { contains } 001\right\} \text { is regular }
\end{aligned}
$$

Many interesting programs recognize regular languages
NETWORK PROTOCOLS
COMPILERS
GENETIC TESTING
ARITHMETIC

Internet Transmission Control Protocol

Let TCPS $=\{w \mid w$ is a complete TCP Session $\}$
Theorem. TCPS is regular

Compilers

Comments :

Are delimited by /* */
Cannot have nested /* */
Must be closed by */
*/ is illegal outside a comment

COMMENTS $=\{$ strings over $\{0,1, /, *\}$ with legal comments $\}$

Theorem. COMMENTS is regular.

Genetic Testing

DNA sequences are strings over the alphabet $\{A, C, G, T\}$.

A gene g is a special substring over this alphabet.

A genetic test searches a DNA sequence for a gene.

GENETICTEST $_{g}=\{$ strings over $\{A, C, G, T\}$ containing g as a substring $\}$

Theorem. GENETICTEST $_{\boldsymbol{g}}$ is regular for every gene \boldsymbol{g}.

Arithmetic

$$
\begin{gathered}
\operatorname{LET} \Sigma_{\mathbf{3}}=\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],\right. \\
\left.\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
\end{gathered}
$$

- A string over Σ_{3} has three ROWS (ROW $_{1}$, ROW $_{2}$, ROW $_{3}$)
- Each ROW $b_{0} b_{1} b_{2} \ldots b_{N}$ represents the integer

$$
b_{0}+2 b_{1}+\ldots+2^{N} b_{N}
$$

- Let $\mathrm{ADD}=\left\{S \in \Sigma_{3}{ }^{*} \mid \mathrm{ROW}_{1}+\mathrm{ROW}_{2}=\mathrm{ROW}_{3}\right\}$

Theorem. ADD is regular.

Regular Operations

An Analogy

In algebra, we try to identify operations which are common to many different mathematical structures

Example: The integers $\mathbb{Z}=\{\ldots-2,-1,0,1,2, \ldots\}$ are closed under

- Addition: $x+y$
- Multiplication: $x \times y$
- Negation: - x
- ...but NOT Division: x / y

We'd like to investigate similar closure properties of the class of regular languages

Regular operations on languages Let $A, B \subseteq \Sigma^{*}$ be languages. Define

Union: $A \cup B=$

Concatenation: $A \circ B=$

Star: $A^{*}=$

Other operations
Let $A, B \subseteq \Sigma^{*}$ be languages. Define

Complement: $\bar{A}=$

Intersection: $A \cap B=$

Reverse: $A^{R}=$

Closure properties of the regular languages

Theorem: The class of regular languages is closed under all three regular operations (union, concatenation, star), as well as under complement, intersection, and reverse.
i.e., if A and B are regular, applying any of these operations yields a regular language

Proving Closure Properties

Complement

Complement: $\bar{A}=\{w \mid w \notin A\}$
Theorem: If A is regular, then \bar{A} is also regular Proof idea:

Union

Union: $A \cup B=\{w \mid w \in A$ or $w \in B\}$
Theorem: If A and B are regular, then so is $A \cup B$
Proof:

$$
\text { Let } \begin{aligned}
M_{A} & =\left(Q_{A}, \Sigma, \delta_{A}, q_{0}^{A}, F_{A}\right) \text { be a DFA recognizing } A \text { and } \\
M_{B} & =\left(Q_{B}, \Sigma, \delta_{B}, q_{0}^{B}, F_{B}\right) \text { be a DFA recognizing } B
\end{aligned}
$$

Goal: Construct a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ that recognizes $A \cup B$

Example

Closure under union proof (cont'd)

Idea: Run both M_{A} and M_{B} at the same time "Cross-product construction"
$Q=Q_{A} \times Q_{B}$
$=\left\{\left(q_{A}, q_{B}\right) \mid q_{A} \in A\right.$ and $\left.q_{B} \in B\right\}$
$\delta\left(\left(q_{A}, q_{B}\right), \sigma\right)=\left(\delta_{A}\left(q_{A}, \sigma\right), \delta_{B}\left(q_{B}, \sigma\right)\right)$
$q_{0}=\left(q_{0}^{A}, q_{0}^{B}\right)$
$F=\left\{\left(q_{A}, q_{B}\right) \mid q_{A} \in F_{A}\right.$ or $\left.q_{B} \in F_{B}\right\}$
$=F_{A} \times Q_{B} \cup Q_{A} \times F_{B}$

Example (cont'd)

Intersection

Intersection: $A \cap B=\{w \mid w \in A$ and $w \in B\}$
Theorem: If A and B are regular, then so is $A \cap B$
Proof:

$$
\text { Let } \begin{aligned}
M_{A} & =\left(Q_{A}, \Sigma, \delta_{A}, q_{0}^{A}, F_{A}\right) \text { be a DFA recognizing } A \text { and } \\
M_{B} & =\left(Q_{B}, \Sigma, \delta_{B}, q_{0}^{B}, F_{B}\right) \text { be a DFA recognizing } B
\end{aligned}
$$

Goal: Construct a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ that recognizes $A \cap B$

Intersection

Intersection: $A \cap B=\{w \mid w \in A$ and $w \in B\}$
Theorem: If A and B are regular, then so is $A \cap B$ Another Proof:
$A \cap B=\overline{\bar{A} \cup \bar{B}}$

Reverse

Reverse: $A^{R}=\left\{w_{1} w_{2} \cdots w_{n} \mid w_{n} \cdots w_{1} \in A\right\}$
Theorem: If A is regular, then A^{R} is also regular Proof idea:

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA recognizing A
Goal: Construct a DFA $M^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ that recognizes A^{R}

Define M^{\prime} as M but

- With the arrows reversed
- With start and accept states swapped

Example (Reverse)

M^{\prime}

Closure under reverse

M^{\prime} is not always a DFA!

- It might have many start states
- Some states may have too many outgoing edges, or none at all

Nondeterminism

A Nondeterministic Finite Automaton (NFA) accepts if there is a way to make it reach an accept state.

Example

Example

$L(M)=$

Formal Definition of a NFA

An NFA is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Q is the set of states
Σ is the alphabet
$\delta: Q \times \Sigma_{\varepsilon} \rightarrow P(Q)$ is the transition function
$q_{0} \in Q$ is the start state
$F \subseteq Q$ is the set of accept states
M accepts a string w if there exists a path from q_{0} to an accept state that can be followed by reading w.

$$
\begin{aligned}
& \text { Example } \\
& M=\left(\boldsymbol{Q}, \boldsymbol{\Sigma}, \delta, \boldsymbol{Q}_{0}, \boldsymbol{F}\right) \\
& Q=\left\{\boldsymbol{q}_{\mathbf{0}}, \boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \boldsymbol{q}_{3}, \boldsymbol{q}_{4}\right\} \\
& \Sigma=\{\mathbf{0}, \mathbf{1}\} \\
& F=\left\{\boldsymbol{q}_{4}\right\} \\
& \delta\left(\boldsymbol{q}_{2}, \mathbf{1}\right)= \\
& \delta\left(\boldsymbol{q}_{3}, \mathbf{1}\right)=
\end{aligned}
$$

Example

$$
\begin{array}{ll}
N=\left(\boldsymbol{Q}, \boldsymbol{\Sigma}, \delta, \boldsymbol{q}_{0}, F\right) & \delta\left(\boldsymbol{q}_{\mathbf{0}}, \mathbf{0}\right)= \\
Q=\left\{\boldsymbol{q}_{\mathbf{0}}, \boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \boldsymbol{q}_{3}\right\} & \delta\left(\boldsymbol{q}_{\mathbf{0}}, \mathbf{1}\right)= \\
\Sigma=\left\{\begin{array}{l}
\mathbf{0}, \mathbf{1}\}
\end{array}\right. & \delta\left(\boldsymbol{q}_{\mathbf{1}}, \varepsilon\right)= \\
F=\left\{\boldsymbol{q}_{3}\right\} & \delta\left(\boldsymbol{q}_{2}, \mathbf{0}\right)=
\end{array}
$$

Nondeterminism

Deterministic Computation

accept or reject

Nondeterministic
Computation

Ways to think about nondeterminism

- (restricted) parallel computation
- tree of possible computations
- guessing and verifying the "right" choice

