Lecture 3:

- Nondeterminism
- Equivalence of NFAs and DFAs
- More on closure properties

Reading:
Sipser Ch 1.1-1.2

Mark Bun
January 29, 2020
A **Nondeterministic Finite Automaton** (NFA) accepts if there is a way to make it reach an accept state.
Example: Does this NFA accept the string 1100?

1100 is accepted
Some special transitions

0

0, 1

0, 1

0, 1

ε

0 = 01

ω = ε
Example

$L(M) = \{ \varepsilon, 1, 00^3 \}$

$L(M') = \{ w \mid w \text{ ends in } 1 \text{ or } w \text{ ends in } 00^3 \}$
Example

\[L(M) = \{ w \mid w \text{ contains } 101 \text{ or } 11^3 \} \]
Formal Definition of a NFA

An NFA is a 5-tuple \(M = (Q, \Sigma, \delta, q_0, F) \)

- \(Q \) is the set of states
- \(\Sigma \) is the alphabet
- \(\delta : Q \times \Sigma_e \rightarrow P(Q) \) is the transition function
- \(q_0 \in Q \) is the start state
- \(F \subseteq Q \) is the set of accept states

\(M \) accepts a string \(w \) if there exists a path from \(q_0 \) to an accept state that can be followed by reading \(w \).
Example

\[M = (Q, \Sigma, \delta, Q_0, F) \]

\[Q = \{q_0, q_1, q_2, q_3, q_4\} \]

\[\Sigma = \{0, 1\} \]

\[F = \{q_4\} \]

\[\delta(q_2, 1) = \varepsilon q_3 \]

\[\delta(q_3, 1) = \emptyset \]
Example

$N = (Q, \Sigma, \delta, q_0, F)$

$Q = \{q_0, q_1, q_2, q_3\}$

$\Sigma = \{0, 1\}$

$F = \{q_3\}$

$\delta(q_0, 0) = \{q_0, q_3\}$

$\delta(q_0, 1) = \{q_1, q_2, q_3\}$

$\delta(q_1, \varepsilon) = \{q_1, q_2, q_3\}$

$\delta(q_2, 0) = \emptyset$
Nondeterminism

Ways to think about nondeterminism:
- (restricted) parallel computation
- tree of possible computations
- guessing and verifying the “right” choice
Why study NFAs?

• Not really a realistic model of computation: Real computing devices can’t really try many possibilities in parallel

But:

• Useful tool for understanding power of DFAs/regular languages

NFAs equivalent in power to DFAs
• NFAs can be simpler than DFAs
• Lets us study “nondeterminism” as a resource
 (cf. P vs. NP)
NFAs can be simpler than DFAs

A DFA that recognizes the language \{1\}:

An NFA that recognizes the language \{1\}:
Sometimes DFAs **must** be larger

Theorem. Every DFA for the language \{1\} must have at least 3 states.

Proof: **contradiction:** Suppose exists 2-state DFA

![DFA Diagram]

\[\epsilon \xrightarrow{1} \]

\[0 \xrightarrow{0} \]

\[0 \xrightarrow{1} \]

\[\Rightarrow \text{no 2-state DFA for 1} \]

Any DFA that does the right thing on these inputs messes up an 01
Equivalence of NFAs and DFAs
Equivalence of NFAs and DFAs

Every DFA is an NFA, so NFAs are at least as powerful as DFAs

\[\text{Regular languages } \subseteq \text{languages recognizable by NFAs} \]

Theorem: For every NFA \(N \), there is a DFA \(M \) such that \(L(M) = L(N) \)

Corollary: A language is regular if and only if it is recognized by an NFA
Equivalence of NFAs and DFAs (Proof)

Let \(N = (Q, \Sigma, \delta, q_0, F) \) be an NFA

Goal: Construct DFA \(M = (Q', \Sigma, \delta', q_0', F') \) recognizing \(L(N) \)

Intuition: Run all threads of \(N \) in parallel, maintaining the set of states where all threads are.

Formally: \(Q' = P(Q) \)

"The Subset Construction"
NFA -> DFA Example
Subset Construction (Formally)

Input: \(N = (Q, \Sigma, \delta, q_0, F) \)
Output: \(M = (Q', \Sigma, \delta', q_0', F') \)

\[
Q' = \emptyset(R)
\]

\[
\delta' : Q' \times \Sigma \rightarrow Q'
\]

\[
\delta'(R, \sigma) = \bigcup_{r \in R} S(r, \sigma)
\text{ for all } R \subseteq Q \text{ and } \sigma \in \Sigma.
\]

\[
q_0' = \notin q_0
\]

\[
F' = \notin F \text{ contains a final state of } N
\]

\[
(\subseteq R)
\]

1/29/2020
NFA -> DFA Example

Diagram showing the transition from an NFA to a DFA.
Subset Construction (Formally)

Input: NFA $N = (Q, \Sigma, \delta, q_0, F)$
Output: DFA $M = (Q', \Sigma, \delta', q'_0, F')$

\[Q' = P(Q) \]

\[\delta' : Q' \times \Sigma \rightarrow Q' \]
\[\delta'(R, \sigma) = \bigcup_{r \in R} E(\delta(r, \sigma)) \quad \text{for all } R \subseteq Q \text{ and } \sigma \in \Sigma. \]

\[q'_0 = \varepsilon(\{q_0\}) \]

\[F' = \{ R \in Q' \mid R \text{ contains some accept state of } N \} \]
Proving the Construction Works

Claim: For every string w, running M on w leads to state

$$\{ q \in Q \mid \text{There exists a computation of } N \text{ on input } w \text{ ending at } q \}$$

Proof idea: By induction on $|w|$
Historical Note

Subset Construction introduced in Rabin & Scott’s 1959 paper “Finite Automata and their Decision Problems”

1976 ACM Turing Award citation

For their joint paper "Finite Automata and Their Decision Problem," which introduced the idea of nondeterministic machines, which has proved to be an enormously valuable concept. Their (Scott & Rabin) classic paper has been a continuous source of inspiration for subsequent work in this field.
Is this construction the best we can do?

Subset construction converts an n state NFA into a 2^n-state DFA

Could there be a construction that always produces, say, an n^2-state DFA?

Theorem: For every $n \geq 1$, there is a language L_n such that
1. There is an $(n + 1)$-state NFA recognizing L_n.
2. There is no DFA recognizing L_n with fewer than 2^n states.

Conclusion: For finite automata, nondeterminism provides an exponential savings over determinism (in the worst case).