BU CS 332 – Theory of Computation

Lecture 4:

• Non-regular languages
• Pumping Lemma

Reading:
Sipser Ch 1.4

Mark Bun
February 3, 2020
The Philosophical Question

• We’ve seen techniques for showing that languages are regular

• Could it be the case that every language is regular?
Regular?

Construct an NFA for the following languages

\(\{0^n1^n \mid 0 < n \leq 2\} \)

\(\{0^n1^n \mid 0 < n \leq k\} \)

\(\{0^n1^n \mid n > 0\} \)
Proving a language is not regular

Theorem: $A = \{0^n1^n \mid n > 0\}$ is not regular

Proof: (by contradiction)

Let M be a DFA with k states recognizing A

Consider running M on input 0^k1^k
Regular or not?

\[C = \{ w \mid w \text{ has equal number of 1s and 0s} \} \]

\[D = \{ w \mid w \text{ has equal number of 10s and 01s} \} \]
The Pumping Lemma

A **systematic** way to prove that a language is not regular
Why do we teach this?

Cons:
• The statement is difficult (5 quantifiers!)
• Some non-regular languages can still be pumped

Pros:
• Proof illuminates essential structure of finite automata
• Generalizes to other models of computation / classes of languages (CFLs, self-assembly)
• Applying it can be fun!
Intuition for the Pumping Lemma

Imagine a DFA with p states that recognizes strings of length $> p$

Idea: If you can go around the cycle once, you can go around 0 or 2,3,4... times
Pumping Lemma (Informal)

Let L be a regular language. Let w be a “long enough” string in L.

Then we can write $w = xyz$ such that $xy^iz \in L$ for every $i \geq 0$.

$i = 0:$

$i = 1:$

$i = 2:$

$i = 3:$
Pumping Lemma (Formal)

Let L be a regular language.

Then there exists a “pumping length” p such that

For every $w \in L$ where $|w| \geq p$,

- w can be split into three parts $w = xyz$ where:

1. $|y| > 0$
2. $|xy| \leq p$
3. $xy^iz \in L$ for all $i \geq 0$

Example:

Let $L = \{w \mid$ all a’s in w appear before all b’s$\}$; $p = 1$
Using the Pumping Lemma

Theorem: $A = \{0^n1^n \mid n > 0\}$ is not regular

Proof: (by contradiction)

Assume instead that A is regular. Then A has a pumping length p.

What happens if we try to pump 0^p1^p?

If A is regular, w can be split into $w = xyz$, where

1. $|y| > 0$
2. $|xy| \leq p$
3. $xy^iz \in A$ for all $i \geq 0$
General Strategy for proving L is not regular

Proof by contradiction: assume L is regular. Then there is a pumping length p.
Pumping Lemma as a game

1. **YOU** pick the language L to be proved nonregular.
2. **ADVERSARY** picks a possible pumping length p.
3. **YOU** pick w of length at least p.
4. **ADVERSARY** divides w into x, y, z, obeying rules of the Pumping Lemma: $|y| > 0$ and $|xy| \leq p$.
5. **YOU** win by finding $i \geq 0$, for which xy^iz is not in L.

If *regardless* of how the **ADVERSARY** plays this game, you can always win, then L is nonregular.
Example: Palindromes

Claim: $L = \{ww^R \mid w \in \{0,1\}^*\}$ is not regular

Proof: Assume L is regular with pumping length p

1. Find $w \in L$ with $|w| > p$

2. Show that w cannot be pumped

Intuitively
Example: Palindromes

Claim: \(L = \{ww^R \mid w \in \{0,1\}^*\} \) is not regular

Proof: Assume \(L \) is regular with pumping length \(p \)

1. Find \(w \in L \) with \(|w| > p \)

2. Show that \(w \) cannot be pumped

 Formally If \(w = xyz \) with \(|xy| \leq p \), then...
Claim: $L = \{0^i1^j \mid i > j \geq 0\}$ is not regular

Proof: Assume L is regular with pumping length p

1. Find $w \in L$ with $|w| > p$

2. Show that w cannot be pumped

Intuitively
Claim: $L = \{0^i 1^j \mid i > j \geq 0\}$ is not regular

Proof: Assume L is regular with pumping length p

1. Find $w \in L$ with $|w| > p$

2. Show that w cannot be pumped
 Formally If $w = xyz$ with $|xy| \leq p$, then...
Claim: \(BALANCED = \{w \mid w \text{ has an equal # of 0s and 1s}\} \) is not regular

Proof: Assume \(L \) is regular with pumping length \(p \)

1. Find \(w \in L \) with \(|w| > p \)

2. Show that \(w \) cannot be pumped
 Formally If \(w = xyz \) with \(|xy| \leq p \), then...
Reusing a Proof

Pumping a language can be lots of work...
Let’s try to reuse that work!

How else might we show that $BALANCED$ is regular?

$\{0^n1^n \mid n \geq 0\} = BALANCED \cap \{w \mid \text{all 0s in } w \text{ appear before all 1s}\}$
Using Closure Properties

If A is not regular, we can show a related language B is not regular

By contradiction: If B is regular, then $B \cap C (= A)$ is regular.

But A is not regular so neither is B!
Example

Prove $B = \{0^i1^j | i \neq j\}$ is not regular using nonregular language $A = \{0^n1^n | n \geq 0\}$ and regular language $C = \{w \mid \text{all 0s in } w \text{ appear before all 1s}\}$