BU CS 332 – Theory of Computation

Lecture 4:

- Non-regular languages
- Pumping Lemma

Reading: Sipser Ch 1.4

Mark Bun February 3, 2020

The Philosophical Question

• We've seen techniques for showing that languages are regular

• Could it be the case that every language is regular?

Regular?

Construct an NFA for the following languages $\{0^n 1^n \mid 0 < n \leq 2\}$

$\{0^n 1^n | 0 < n \leq k\}$

$\{0^n 1^n \mid n > 0\}$

Proving a language is not regular

Theorem: $A = \{0^n 1^n \mid n > 0\}$ is not regular

Proof: (by contradiction)

Let M be a DFA with k states recognizing AConsider running M on input $0^k 1^k$

Regular or not?

 $C = \{ w \mid w \text{ has equal number of } 1s \text{ and } 0s \}$

$D = \{ w \mid w \text{ has equal number of } 10 \text{ s and } 01 \text{ s} \}$

The Pumping Lemma

A systematic way to prove that a language is not regular

Why do we teach this?

Cons:

- The statement is difficult (5 quantifiers!)
- Some non-regular languages can still be pumped

Pros:

- Proof illuminates essential structure of finite automata
- Generalizes to other models of computation / classes of languages (CFLs, self-assembly)
- Applying it can be fun!

Intuition for the Pumping Lemma

Imagine a **DFA** with p states that recognizes strings of length > p

Idea: If you can go around the cycle once, you can go around 0 or 2,3,4... times

Pumping Lemma (Informal)

Let L be a regular language. Let w be a "long enough" string in L.

Then we can write w = xyz such that $xy^iz \in L$ for every $i \ge 0$. i = 0: i = 2:

2/3/2020

i = 3:

Pumping Lemma (Formal)

Let L be a regular language.

Then there exists a "pumping length" p such that

For every $w \in L$ where $|w| \geq p$, w can be split into three parts w = xyz where:

1.
$$|y| > 0$$

2. $|xy| \le p$
3. $xy^iz \in L$ for all $i \ge 0$
Example:
Let $L = \{w \mid all a's in w appear before all b's\}; $p = 1$$

Using the Pumping Lemma

Theorem: $A = \{0^n 1^n | n > 0\}$ is not regular

Proof: (by contradiction)

Assume instead that A is regular. Then A has a pumping length p.

What happens if we try to pump $0^p 1^p$?

If A is regular, w can be split into w = xyz, where 1. |y| > 02. $|xy| \le p$ 3. $xy^iz \in A$ for all $i \ge 0$ General Strategy for proving L is not regular

Proof by contradiction: assume *L* is regular.

Then there is a pumping length *p*.

Pumping Lemma as a game

- 1. YOU pick the language *L* to be proved nonregular.
- 2. ADVERSARY picks a possible pumping length p.
- 3. YOU pick *w* of length at least *p*.
- 4. ADVERSARY divides w into x, y, z, obeying rules of the Pumping Lemma: |y| > 0 and $|xy| \le p$.
- 5. YOU win by finding $i \ge 0$, for which $xy^i z$ is not in L.

If *regardless* of how the ADVERSARY plays this game, you can always win, then L is nonregular

Example: Palindromes

<u>Claim</u>: $L = \{ww^R | w \in \{0,1\}^*\}$ is not regular

<u>Proof:</u> Assume L is regular with pumping length p

- 1. Find $w \in L$ with |w| > p
- 2. Show that *w* cannot be pumped <u>Intuitively</u>

Example: Palindromes

<u>Claim</u>: $L = \{ww^R | w \in \{0,1\}^*\}$ is not regular

<u>Proof:</u> Assume L is regular with pumping length p

1. Find $w \in L$ with |w| > p

2. Show that w cannot be pumped Formally If w = xyz with $|xy| \le p$, then...

Now you try!

<u>Claim</u>: $L = \{0^i 1^j | i > j \ge 0\}$ is not regular

<u>Proof:</u> Assume L is regular with pumping length p

- 1. Find $w \in L$ with |w| > p
- 2. Show that *w* cannot be pumped <u>Intuitively</u>

Now you try!

<u>Claim</u>: $L = \{0^i 1^j | i > j \ge 0\}$ is not regular

<u>Proof:</u> Assume L is regular with pumping length p

- 1. Find $w \in L$ with |w| > p
- 2. Show that w cannot be pumped Formally If w = xyz with $|xy| \le p$, then...

Choosing wisely

<u>Claim:</u> $BALANCED = \{w \mid w \text{ has an equal } \# \text{ of } 0s \text{ and } 1s\}$ is not regular <u>Proof:</u> Assume L is regular with pumping length p

1. Find $w \in L$ with |w| > p

2. Show that w cannot be pumped Formally If w = xyz with $|xy| \le p$, then...

Pumping a language can be lots of work... Let's try to reuse that work!

How else might we show that *BALANCED* is regular?

 $\{0^n 1^n | n \ge 0\} = BALANCED \cap \{w | all 0s in w appear before all 1s\}$

Using Closure Properties

If A is not regular, we can show a related language B is not regular

any of $\{\circ, \cup, \cap\}$ or, for one language, $\{\neg, R, *\}$

<u>By contradiction</u>: If *B* is regular, then $B \cap C$ (= *A*) is regular. But *A* is not regular so neither is *B*!

Example

Prove $B = \{0^i 1^j | i \neq j\}$ is not regular using nonregular language $A = \{0^n 1^n | n \ge 0\}$ and regular language $C = \{w \mid all \ 0s \ in \ w \ appear \ before \ all \ 1s\}$