Lecture 5:

- More on pumping
- Regular expressions
- Regular expressions = regular languages

Reading:
Sipser Ch 1.3

Mark Bun
February 5, 2020
More on Pumping
Pumping Lemma (Formal)

Let L be a regular language.

Then there exists a “pumping length” p such that

For every $w \in L$ where $|w| \geq p$,

w can be split into three parts $w = xyz$ where:

1. $|y| > 0$
2. $|xy| \leq p$
3. $xy^iz \in L$ for all $i \geq 0$
General Strategy for proving L is not regular

Proof by contradiction: assume L is regular. Then there is a pumping length p.

1. Find $w \in L$ with $|w| \geq p$
2. Show that w cannot be pumped
3. Conclude L must not have been regular
Claim: \(L = \{0^i 1^j | i > j \geq 0\} \) is not regular

Proof: Assume \(L \) is regular with pumping length \(p \)

1. Find \(w \in L \) with \(|w| \geq p \)

2. Show that \(w \) cannot be pumped

Formally

If \(w = xyz \) with \(|xy| \leq p \), then...

\[y = 0^k, k > 0 \]
\[x = 0^m, m \geq 0 \]
\[z = 0^{p+1-(m+k)}, 1 \leq p \]

\[yyyz = \underbrace{000000} \ldots \underbrace{111111} \]

\[xyyyz = \underbrace{000000}_y \underbrace{000000}_y \underbrace{000000}_y \]

\[xyyyz \notin L \]
Reusing a Proof

Pumping a language can be lots of work...
Let’s try to reuse that work!

How might we show that

\[\text{BALANCED} = \{ w \mid w \text{ has an equal # of 0s and 1s} \} \]

is not regular?

\[\{0^n1^n \mid n \geq 0\} = \text{BALANCED} \cap \{ w \mid \text{all 0s in } w \text{ appear before all 1s}\} \]

Not regular

Assume for contradiction \(\text{BALANCED} \) is regular \(\Rightarrow \) RHS regular (closed under \(\cap \)) \(\Rightarrow \) \(\text{BALANCED} \) not regular
Using Closure Properties

If A is not regular, we can show a related language B is not regular

$$B \cap C = A$$

(any of \circ, \cup, \cap) or, for one language, $\{\neg, R, *\}$

By contradiction: If B is regular, then $B \cap C (= A)$ is regular. But A is not regular so neither is B!
Example \(\cup_{\text{uneq}} C = \sum^* \quad C = A \cup B \)

\[A = C \setminus B, \quad B = C \setminus A \]

Prove \(B = \{0^i1^j | i \neq j\} \) is not regular using nonregular language \(A = \{0^n1^n | n \geq 0\} \) and regular language \(C = \{w | \text{all 0s in } w \text{ appear before all 1s}\} \)

\(B = A \setminus AC \)

\(A = \overline{B} \cap C \)

\(B \) regular \(\implies \) \(A \) regular \(\implies \) non-regular
Regular Expressions
Regular Expressions

• A different way of describing regular languages
• A regular expression expresses a (possibly complex) language by combining simple languages using the regular operations

“Simple” languages: $\emptyset, \{\varepsilon\}, \{a\}$ for some $a \in \Sigma$

Regular operations:

Union: $A \cup B$

Concatenation: $A \circ B = \{ab \mid a \in A, b \in B\}$

Star: $A^* = \{a_1a_2...a_n \mid n \geq 0 \text{ and } a_i \in A\}$

\[= \varepsilon \cup A \cup AA \cup AAA \cup AAAAA \cup \ldots\]
Regular Expressions – Syntax

A regular expression R is defined recursively using the following rules:

1. ε, \emptyset, and a are regular expressions for every $a \in \Sigma$

2. If R_1 and R_2 are regular expressions, then so are $(R_1 \cup R_2)$, $(R_1 \circ R_2)$, and (R_1^*)

Examples: (over $\Sigma = \{a, b, c\}$)

$(a \circ b)$ $(((a \circ (b^*)) \circ c) \cup (((a^*) \circ b))^*)$ (\emptyset^*)
Regular Expressions – Semantics

$L(R)$ = the language a regular expression describes

\[L(a^*) = (L(a))^* = (\varepsilon a^3)^* \]

1. \(L(\emptyset) = \emptyset \)
2. \(L(\varepsilon) = \{\varepsilon\} \)
3. \(L(a) = \{a\} \) for every \(a \in \Sigma \)
4. \(L((R_1 \cup R_2)) = L(R_1) \cup L(R_2) \)
5. \(L((R_1 \circ R_2)) = L(R_1) \circ L(R_2) \)
6. \(L((R_1^*)) = (L(R_1))^* \)

Example: \(L(((a^*) \circ (b^*))) = \{a^i b^j \mid i, j \geq 0, i + j \leq 3\} \)
Simplifying Notation

• Omit \(\circ \) symbol: \((ab) = (a \circ b)\)

\[R_1R_2 = R_1 \circ R_2 \]

• Omit many parentheses, since union and concatenation are associative:

\[(a \cup b \cup c) = (a \cup (b \cup c)) = ((a \cup b) \cup c) \]

• Order of operations: Evaluate star, then concatenation, then union

\[ab^* \cup c = (a(b^*)) \cup c \]

\[((a^*) \circ (b^*)) = a^* b^* \]
Examples

Let $\Sigma = \{0, 1\}$

1. $\{w \mid w \text{ contains exactly one } 1\}$
 \[0^* 1 0^*\]

2. $\{w \mid w \text{ has length at least 3 and its third symbol is } 0\}$
 \[(011) (\overline{011})^* 0 (\overline{011})^*\]

3. $\{w \mid \text{every odd position of } w \text{ is } 1\}$
 \[(011)^* (\in \cup_0 011)^* \quad 0 \quad 0\]
Syntactic Sugar

- For alphabet Σ, the regex Σ represents $L(\Sigma) = \Sigma$
- For regex R, the regex $R^+ = RR^*$

$R^* = R^+ \cup \varepsilon$

Not captured by regular expressions: Backreferences

\[1 \backslash 2\]
Equivalence of Regular Expressions, NFAs, and DFAs
Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression
Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA
Proof: Induction on size of a regex

Base cases:

\[R = \emptyset \]

\[R = \varepsilon \]

\[R = a \]
Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA
Proof: Induction on size of a regex

Inductive step:

\[R = (R_1 \cup R_2) \]

\[R = (R_1 R_2) \]

\[R = (R_1^*) \]
Example

Convert $(1(0 \cup 1))^*$ to an NFA
Example

Simplified

= 1

= 0, 1