
BU CS 332 – Theory of Computation

Lecture 5:

• More on pumping

• Regular expressions

• Regular expressions =
regular languages

Reading:

Sipser Ch 1.3

Mark Bun

February 5, 2020

More on Pumping

2/5/2020 CS332 - Theory of Computation 2

Pumping Lemma (Formal)

2/5/2020 CS332 - Theory of Computation 3

Let 𝐿 be a regular language.

Then there exists a “pumping length” 𝑝 such that

1. |𝑦| > 0

2. |𝑥𝑦| ≤ 𝑝

3. 𝑥𝑦𝑖𝑧 𝐿 for all 𝑖 ≥ 0

For every 𝑤 ∈ 𝐿 where |𝑤| ≥ 𝑝,
𝑤 can be split into three parts 𝑤 = 𝑥𝑦𝑧 where:

General Strategy for proving 𝐿 is not regular

2/5/2020 CS332 - Theory of Computation 4

Proof by contradiction: assume 𝐿 is regular.

Then there is a pumping length 𝑝.

1. Find 𝑤 ∈ 𝐿 with 𝑤 ≥ 𝑝

2. Show that 𝑤 cannot be pumped

3. Conclude 𝐿 must not have been regular

Pumping down

2/5/2020 CS332 - Theory of Computation 5

Claim: 𝐿 = 0𝑖1𝑗 𝑖 > 𝑗 ≥ 0} is not regular

Proof: Assume 𝐿 is regular with pumping length 𝑝

1. Find 𝑤 ∈ 𝐿 with 𝑤 ≥ 𝑝

2. Show that 𝑤 cannot be pumped
Formally If 𝑤 = 𝑥𝑦𝑧 with |𝑥𝑦| ≤ 𝑝, then…

Reusing a Proof

2/5/2020 CS332 - Theory of Computation 6

Pumping a language can be lots of work…

Let’s try to reuse that work!

0𝑛1𝑛 𝑛 ≥ 0} = 𝐵𝐴𝐿𝐴𝑁𝐶𝐸𝐷 ∩ 𝑤 all 0s in 𝑤 appear before all 1s}

How might we show that
𝐵𝐴𝐿𝐴𝑁𝐶𝐸𝐷 = 𝑤 𝑤 has an equal # of 0s and 1s}

is not regular?

Using Closure Properties

2/5/2020 CS332 - Theory of Computation 7

𝐵 𝐶 𝐴∩ =

(not regular)

If 𝐴 is not regular, we can show a related
language 𝐵 is not regular

any of {∘, ∪, ∩} or, for one language, {¬, R, *}

By contradiction: If 𝐵 is regular, then 𝐵 ∩ 𝐶 (= 𝐴) is regular.

(regular)

But 𝐴 is not regular so neither is 𝐵!

Example

2/5/2020 CS332 - Theory of Computation 8

Prove 𝐵 = {0𝑖1𝑗|𝑖 ≠ 𝑗} is not regular
using nonregular language 𝐴 = 0𝑛1𝑛 𝑛 ≥ 0
and regular language

𝐶 = 𝑤 all 0s in 𝑤 appear before all 1s}

Regular Expressions

2/5/2020 CS332 - Theory of Computation 9

Regular Expressions

• A different way of describing regular languages

• A regular expression expresses a (possibly complex)
language by combining simple languages using the
regular operations

“Simple” languages: ∅, 𝜀 , {𝑎} for some 𝑎 ∈ Σ

Regular operations:

Union: 𝐴 ∪ 𝐵

Concatenation: 𝐴 ∘ 𝐵 = 𝑎𝑏 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}

Star: 𝐴∗ = { 𝑎1𝑎2…𝑎𝑛|𝑛 ≥ 0 and 𝑎𝑖 ∈ 𝐴}

2/5/2020 CS332 - Theory of Computation 10

Regular Expressions – Syntax

A regular expression 𝑅 is defined recursively using the
following rules:

1. 𝜀, ∅, and 𝑎 are regular expressions for every 𝑎 ∈ Σ

2. If 𝑅1 and 𝑅2 are regular expressions, then so are

(𝑅1∪ 𝑅2), (𝑅1∘ 𝑅2), and (𝑅1
∗)

Examples: (over Σ = {𝑎, 𝑏, 𝑐})
𝑎 ∘ 𝑏 ((((𝑎 ∘ (𝑏∗)) ∘ 𝑐) ∪ (((𝑎∗) ∘ 𝑏))∗)) (∅∗)

2/5/2020 CS332 - Theory of Computation 11

Regular Expressions – Semantics

𝐿(𝑅) = the language a regular expression describes

1. 𝐿(∅) = ∅

2. 𝐿 𝜀 = 𝜀

3. 𝐿(𝑎) = {𝑎} for every 𝑎 ∈ Σ

4. 𝐿((𝑅1∪ 𝑅2)) = 𝐿(𝑅1) ∪ 𝐿(𝑅2)

5. 𝐿((𝑅1∘ 𝑅2)) = 𝐿(𝑅1) ∘ 𝐿(𝑅2)

6. 𝐿 𝑅1
∗ = (𝐿 𝑅1)∗

Example: 𝐿(((𝑎∗) ∘ (𝑏∗))) =

2/5/2020 CS332 - Theory of Computation 12

Simplifying Notation

• Omit ∘ symbol: 𝑎𝑏 = 𝑎 ∘ 𝑏

• Omit many parentheses, since union and concatenation
are associative:

𝑎 ∪ 𝑏 ∪ 𝑐 = 𝑎 ∪ (𝑏 ∪ 𝑐) = (𝑎 ∪ 𝑏) ∪ 𝑐

• Order of operations: Evaluate star, then concatenation,
then union

𝑎𝑏∗ ∪ 𝑐 = (𝑎 𝑏∗) ∪ 𝑐

2/5/2020 CS332 - Theory of Computation 13

Examples

Let Σ = {0, 1}

1. 𝑤 𝑤 contains exactly one 1}

2. 𝑤 𝑤 has length at least 3 and its third symbol is 0}

3. 𝑤 every odd position of 𝑤 is 1}

2/5/2020 CS332 - Theory of Computation 14

Syntactic Sugar

• For alphabet Σ, the regex Σ represents 𝐿(Σ) = Σ

• For regex 𝑅, the regex 𝑅+ = 𝑅𝑅∗

Not captured by regular expressions: Backreferences

2/5/2020 CS332 - Theory of Computation 15

Equivalence of Regular
Expressions, NFAs, and DFAs

2/5/2020 CS332 - Theory of Computation 16

Regular Expressions Describe Regular Languages

Theorem: A language 𝐴 is regular if and only if it is
described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression

2/5/2020 CS332 - Theory of Computation 17

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

Base cases:

𝑅 = ∅

𝑅 = 𝜀

𝑅 = 𝑎

2/5/2020 CS332 - Theory of Computation 18

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

Inductive step:

𝑅 = (𝑅1∪ 𝑅2)

𝑅 = (𝑅1𝑅2)

𝑅 = 𝑅1
∗

2/5/2020 CS332 - Theory of Computation 19

Example

Convert (1(0 ∪ 1))∗ to an NFA

2/5/2020 CS332 - Theory of Computation 20

NFA -> Regular expression

Theorem 2: Every NFA has an equivalent regex

Proof idea: Simplify NFA by “ripping out” states one at a
time and replacing with regexes

2/5/2020 CS332 - Theory of Computation 21

0

1

0
01*0

Generalized NFAs

• Every transition is labeled by a regex

• One start state with only outgoing transitions

• Only one accept state with only incoming transitions

• Start state and accept state are distinct

2/5/2020 CS332 - Theory of Computation 22

Generalized NFA Example

2/5/2020 CS332 - Theory of Computation 23

𝑅(𝑞𝑠, 𝑞) =

𝑅(𝑞𝑎, 𝑞) =

𝑅(𝑞, 𝑞𝑠) =

𝑞
𝑎∗𝑏

𝑞𝑠 𝑞𝑎

𝑎 ∪ 𝑏

𝑎

NFA -> Regular expression

2/5/2020 CS332 - Theory of Computation 24

NFA GNFA

GNFA

GNFA

Regex

𝑘 states

𝑘 + 2 states

𝑘 + 1 states

2 states

…

NFA -> GNFA

2/5/2020 CS332 - Theory of Computation 25

NFAε

ε

ε

ε

• Add a new start state with no incoming arrows.
• Make a unique accept state with no outgoing arrows.

GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state

2/5/2020 CS332 - Theory of Computation 26

𝑎∗𝑏
𝑞1 𝑞3

𝑎
𝑞2

𝑞1 𝑞3

GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state

2/5/2020 CS332 - Theory of Computation 27

𝑎∗𝑏
𝑞1 𝑞3

𝑎
𝑞2

𝑎 ∪ 𝑏

𝑞1 𝑞3

GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state

2/5/2020 CS332 - Theory of Computation 28

𝑎∗𝑏
𝑞1 𝑞3

𝑎
𝑞2

𝑎 ∪ 𝑏

𝑏

𝑞1 𝑞3

GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state

2/5/2020 CS332 - Theory of Computation 29

𝑞1 𝑞3𝑞2
𝑅1

𝑅2

𝑅3

𝑅4

𝑞1 𝑞3

Example

2/5/2020 CS332 - Theory of Computation 30

𝑎

𝑎

1 2

3

𝑏

𝑏
𝑎

2/5/2020 CS332 - Theory of Computation 31

2/5/2020 CS332 - Theory of Computation 32

2/5/2020 CS332 - Theory of Computation 33

2/5/2020 CS332 - Theory of Computation 34

