BU CS 332 — Theory of Computation

Lecture 5:
* More on pumping Reading:
* Regular expressions Sipser Ch 1.3

e Regular expressions =
regular languages

Mark Bun
February 5, 2020

More on Pumping

2/5/2020 (CS332 - Theory of Computation

Pumping Lemma (Formal)

Let L be a regular language.

Then there exists a “pumping length” p such that

For every w € L where |w| = p,
w can be split into three parts w = xyz where:

1. |y| > 0
2. |xy| < p
3. xy'z e Lforalli = 0

2/5/2020 CS332 - Theory of Computation

General Strategy for proving L is not regular

Proof by contradiction: assume L is regular.
Then there is a pumping length p.

1.Findw € L with [w| = p
2. Show that w cannot be pumped

3. Conclude L must not have been regular

2/5/2020 CS332 - Theory of Computation

Pumping down

Claim: L = {0'1/ |i > j = 0} is not regular

Proof: Assume L is regular with pumping length p

1.Findw € L with [w| = p

2. Show that w cannot be pumped
Formally If w=xyz with |xy| < p, then...

qedug,

Reusing a Proof

Pumping a language can be lots of work...

Let’s try to reuse that work!

How might we show that
BALANCED ={w |w has an equal # of 0s and 1s}
is not regular?

{0"1" |n = 0}=BALANCED n {w | all Os in w appear before all 1s}

2/5/2020 CS332 - Theory of Computation 6

Using Closure Properties

f A is not regular, we can show a related
anguage B is not regular

i 0

I
U (regular) (not regular)

any of {o, U, N} or, for one language, {—, }, *}

By contradiction: If B is regular,then B N C (= A) is regular.
But A is not regular so neither is B!

Example

Prove B = {0'1/|i # j}is not regular
using nonregular language A = {0™"1"|n > 0}
and regular language
C = {w | all Os in w appear before all 1s}

Regular Expressions

2/5/2020 (CS332 - Theory of Computation

Regular Expressions

A different way of describing regular languages

* A regular expression expresses a (possibly complex)
language by combining simple languages using the
regular operations

“Simple” languages: @, {},{a} forsome a € X
Regular operations:

Union: A UB
Concatenation: A o B ={ab |a € A,b € B}

Star: A" = {a;a,...a,|n = 0anda; € A}

Regular Expressions — Syntax

A regular expression R is defined recursively using the
following rules:

1. &, ®,and a are regular expressions for every a € X

2. If Ry and R, are regular expressions, then so are
(R1U R3), (R1° Ry), and (R;)

Examples: (over X = {a, b, c})

(@aeb) ((((@e(b”))ec)u(((a)eb))?)) (27

2/5/2020 CS332 - Theory of Computation 11

Regular Expressions — Semantics

L(R) =the language a regular expression describes

L(®) =0

L(e) = {¢}

L(a) = {a}foreverya € X
L((R{URy)) = L(Ry) U L(R3)
L((Ri° Ry)) = L(Rq1) o L(R3)
L((R)) = (L(Ry))"

O U1 s Wk

Example: L(((a™) o (b¥))) =

2/5/2020 CS332 - Theory of Computation

12

Simplifying Notation
* Omit o symbol: (ab) = (a o b)

* Omit many parentheses, since union and concatenation
are associative:

(aubuc)=(au(uc))=(aub)uUc)

* Order of operations: Evaluate star, then concatenation,
then union

ab*Uc = (a(b*))Uc

2/5/2020 CS332 - Theory of Computation 13

Examples
Let X = {0, 1}

1. {w |w contains exactly one 1}

2. {w |w haslength at least 3 and its third symbol is 0}

3. {w |every odd position of wis 1}

Syntactic Sugar

* For alphabet X, the regex X represents L(X) = X
* For regex R, the regex R* = RR*

Not captured by regular expressions: Backreferences

2/5/2020 CS332 - Theory of Computation

15

Equivalence of Regular
Expressions, NFAs, and DFAs

2/5/2020 (CS332 - Theory o f Computation

Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is
described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA
Theorem 2: Every NFA has an equivalent regular expression

2/5/2020 CS332 - Theory of Computation 17

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

Base cases:
R =0
R = ¢

2/5/2020

CS332 - Theory of Computation

18

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

Inductive step:
R = (R{UR;)

R = (R1R3)
R = (Ry)

2/5/2020

CS332 - Theory of Computation

19

Example

Convert (1(0 U 1))* toan NFA

2/5/2020 CS332 - Theory of Computation

20

NFA -> Regular expression

Theorem 2: Every NFA has an equivalent regex

Proof idea: Simplify NFA by “ripping out” states one at a
time and replacing with regexes

040

Generalized NFAs

* Every transition is labeled by a regex

* One start state with only outgoing transitions

* Only one accept state with only incoming transitions
 Start state and accept state are distinct

Generalized NFA Example

an

~(O— @*.

R(q5q) =
R(q, q)

R(q,qs)

NFA -> Regular expression

-

k states

Regex

2/5/2020 CS332 - Theory of Computation

k + 2 states

k + 1 states

2 states

24

NFA -> GNFA

t 4
N
%

 Add a new start state with no incoming arrows.
 Make a unique accept state with no outgoing arrows.

GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the

missing state
OEON O

GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state a\uUb

GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state aUb

GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the

missing state R,
R, ‘ | R,
ﬁ #

(OH——©

2/5/2020

CS332 - Theory of Computation

31

2/5/2020

CS332 - Theory of Computation

32

2/5/2020

CS332 - Theory of Computation

33

2/5/2020

CS332 - Theory of Computation

34

