BU CS 332 – Theory of Computation

Lecture 5:

- More on pumping
- Regular expressions
- Regular expressions = regular languages

Mark Bun February 5, 2020 Reading: Sipser Ch 1.3

More on Pumping

Pumping Lemma (Formal)

Let L be a regular language.

Then there exists a "pumping length" p such that

For every $w \in L$ where $|w| \geq p$, w can be split into three parts w = xyz where:

1.
$$|y| > 0$$

- 2. $|xy| \leq p$
- 3. $xy^i z \in L$ for all $i \geq 0$

General Strategy for proving L is not regular Proof by contradiction: assume L is regular.

Then there is a pumping length *p*.

- 1. Find $w \in L$ with $|w| \ge p$
- 2. Show that w cannot be pumped
- 3. Conclude *L* must not have been regular

Pumping down

<u>Claim</u>: $L = \{0^i 1^j | i > j \ge 0\}$ is not regular

<u>Proof:</u> Assume L is regular with pumping length p

1. Find $w \in L$ with $|w| \ge p$

2. Show that w cannot be pumped Formally If w = xyz with $|xy| \le p$, then...

Pumping a language can be lots of work...

Let's try to reuse that work!

How might we show that $BALANCED = \{w | w \text{ has an equal } \# \text{ of } 0s \text{ and } 1s\}$ is not regular?

 $\{0^n 1^n | n \ge 0\} = BALANCED \cap \{w | all 0s in w appear before all 1s\}$

Using Closure Properties

If A is not regular, we can show a related language B is not regular

any of $\{\circ, \cup, \cap\}$ or, for one language, $\{\neg, R, *\}$

<u>By contradiction</u>: If *B* is regular, then $B \cap C$ (= *A*) is regular. But *A* is not regular so neither is *B*!

Example

Prove $B = \{0^i 1^j | i \neq j\}$ is not regular using nonregular language $A = \{0^n 1^n | n \ge 0\}$ and regular language $C = \{w \mid all \ 0s \ in \ w \ appear \ before \ all \ 1s\}$

Regular Expressions

Regular Expressions

- A different way of describing regular languages
- A regular expression expresses a (possibly complex) language by combining simple languages using the regular operations

"Simple" languages: $\emptyset, \{\varepsilon\}, \{a\}$ for some $a \in \Sigma$ Regular operations:

> Union: $A \cup B$ Concatenation: $A \circ B = \{ab \mid a \in A, b \in B\}$ Star: $A^* = \{a_1a_2...a_n \mid n \ge 0 \text{ and } a_i \in A\}$

Regular Expressions – Syntax

A regular expression *R* is defined recursively using the following rules:

1. ε , \emptyset , and a are regular expressions for every $a \in \Sigma$

2. If R_1 and R_2 are regular expressions, then so are $(R_1 \cup R_2), (R_1 \circ R_2), \text{ and } (R_1^*)$

Examples: (over $\Sigma = \{a, b, c\}$) ($a \circ b$) (((($a \circ (b^*)$) $\circ c$) \cup (((a^*) $\circ b$))*)) (\emptyset^*)

Regular Expressions – Semantics

L(R) = the language a regular expression describes

1.
$$L(\emptyset) = \emptyset$$

2.
$$L(\varepsilon) = \{\varepsilon\}$$

3.
$$L(a) = \{a\}$$
 for every $a \in \Sigma$

4.
$$L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$$

5.
$$L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$$

6.
$$L((R_1^*)) = (L(R_1))^*$$

Example: $L(((a^*) \circ (b^*))) =$

Simplifying Notation

- Omit symbol: $(ab) = (a \circ b)$
- Omit many parentheses, since union and concatenation are associative:

 $(a \cup b \cup c) = (a \cup (b \cup c)) = ((a \cup b) \cup c)$

• Order of operations: Evaluate star, then concatenation, then union

 $ab^* \cup c = (a(b^*)) \cup c$

Examples

Let $\Sigma = \{0, 1\}$

1. { $w \mid w$ contains exactly one 1}

2. $\{w \mid w \text{ has length at least 3 and its third symbol is 0}\}$

3. {w | every odd position of w is 1}

Syntactic Sugar

- For alphabet Σ , the regex Σ represents $L(\Sigma) = \Sigma$
- For regex R, the regex $R^+ = RR^*$

Not captured by regular expressions: Backreferences

Equivalence of Regular Expressions, NFAs, and DFAs Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA Theorem 2: Every NFA has an equivalent regular expression

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA Proof: Induction on size of a regex

Base cases:

 $R = \emptyset$

 $R = \varepsilon$

R = a

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA Proof: Induction on size of a regex

Inductive step:

$$R = (R_1 \cup R_2)$$

$$R = (R_1 R_2)$$

$$R = (R_1^*)$$

Example

Convert $(1(0 \cup 1))^*$ to an NFA

Theorem 2: Every NFA has an equivalent regex

Proof idea: Simplify NFA by "ripping out" states one at a time and replacing with regexes

Generalized NFAs

- Every transition is labeled by a regex
- One start state with only outgoing transitions
- Only one accept state with only incoming transitions
- Start state and accept state are distinct

Generalized NFA Example

- Add a new start state with no incoming arrows.
- Make a unique accept state with no outgoing arrows.

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state

$$(q_1) \xrightarrow{a^*b} (q_2) \xrightarrow{a} (q_3)$$

$$(q_1) \longrightarrow (q_3)$$

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state $a \cup b$

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the $a \cup b$

 a^*b

 q_1

 q_3

a

 q_2

b

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state R_2

