BU CS 332 — Theory of Computation

Lecture 6:
* NFAs -> Regular expressions Reading:
* Context-free grammars Sipser Ch 1.3,
* Pumping lemma for CFLs jj’ﬁeip 23 2 /50
o1 | o 50 5.06

Mark Bun UW 3 owt dee Tuteday

11\ |
February 10, 2020 Nodan awe) s wele

Regular Expressions — Syntax

A regular expression R is defined recursively using the
following rules:

1. &, ®,and a are regular expressions for every a € X

2. If R{ and R, are regular expressions, then so are
(R{UR3), (R1R3), and (Ry)

Examples: (over £ = {a, b, c})
ab (ab* U a*b)” 0"

2/10/2020 CS332 - Theory of Computation

Regular Expressions — Semantics

L(R) = the language a regular expression describes

L(©®) =0

L(e) = {¢}

L(a) = {a}foreverya € X
L((RiUR3)) =L(Ry) U L(R3)
L((R1R3)) = L(Rq) ° L(R3)
L((R)) = (L(Ry))"

O U1 W

Example: L(a"b*) = {a™b"|m,n = 0}

2/10/2020 CS332 - Theory of Computation

Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is
described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA
Lasd hwe

Theorem 2: Every NFA has an equivalent regular expression
T0awv)

2/10/2020 CS332 - Theory of Computation 4

NFA -> Regular expression

Theorem 2: Every NFA has an equivalent regex

Proof idea: Simplify NFA by “ripping out” states one at a
time and replacing with regexes

00

Generalized NFAs /‘5@

* Every transition is labeled by a regex

* One start state with only outgoing transitions

* Only one accept state with only incoming transitions
 Start state and accept state are distinct

an

0 @.

Generalized NFA Example §15 + ¢

U p™) =

an

~(O—= @*.

R(q,q) = a %
R(@pq) = ©
1!?(61,@54)S = gﬁ

2/10/2020 CS332 - Theory of Computation

NFA -> Regular expression

‘

k states

k + 2 states

k + 1 states

2 states

Regex

2/10/2020 CS332 - Theory of Computation

NFA -> GNFA

 Add a new start state with no incoming arrows.
* Make a unique accept state with no outgoing arrows.

GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the

missing state
‘ G

GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state aub

———

GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state aUb

a*b a
(D)= ()>()

GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the

missing state R,
R, ‘ | R,
ﬁ #

R,
A
(O——
ﬂ

Example A \ //7 _ oar0lo)
-O~Q=—0 (| 0
b o™ J

/ x
Urew \ -

A 2™ b U vewse Sl @

—) _(:j@ ,&9\/0\7) > @\?’Q—

22) < -
Go¥ bUbaa’h) (aa*ylaT)

2

N B SN °
Q\ vl [O ot 0u @
Ao ©
e

2/10/2020 (CS332 - Theory of Computation

2/10/2020

CS332 - Theory of Computation

15

2/10/2020

CS332 - Theory of Computation

16

Context-Free Grammars

2/10/2020 (CS332 - Theory of Computation

Some History

An abstract model for two distinct problems

Rules for parsing natural languages

TERER WODELS FOR THE DESCRIBTION OF LANGUAGE

Nean Chomaicy
Department of Wodern Languages and Research laboratory of Electronice
Massackusetta Institute of Technology
Caxbridge, Massachusotts

Abstract

We itvestigatle several conceptions of ebsarvations, to show how they are interrolated,
linguistic structure to dstermine whether or and to predict an indefinoite musber of pew
not they can provide simsple and "revealing® phenomena. A mathematical theory has the
grammars that generate all of the sentences additional property that predictilons follow
of English and only thess. We find that mo rigorously from the body of theory. Sisilarly,
finite-stats Markny process that produces a grazzar is based oo a finite ouzber of observed
sFebols with transition from state to state sentences (the 1lngulst's corpus) and 1%
can serve as an English grasmar. MFurthermore, "projects® this set to an infinite set of
the particular subclass of such procesees Shat grasmatisal centences by eotablishing geseral
produce n-order statistical approximations to "laws" (grammatical rules) framed in terms of

2/10/2020 CS332 - Theory of Computation 18

Some History

An abstract model for two distinct problems

Specification of syntax and compilation for programming
languages

1977 ACM Turing Award citation
(John Backus)

For profound, influential, and lasting
contributions to the design of practical high-
level programming systems, notably through

his work on FORTRAN, and for seminal
publication of formal procedures for the
specification of programming languages.

2/10/2020 CS332 - Theory of Computation 19

Context-Free Grammar (Informal)

Example Grammar G

\JoviaVieg ﬁ\/_’;
A — 041 3 Vlfes,

A ->B |
B:# Tefmal & O)‘)#

Derivation T
o

= OAL = 004N = 0051\ = 0041\
v N A
LG = §0"41" | nv 0

2/10/2020 CS332 - Theory of Computation 20

Context-Free Grammar (Informal)

Example Grammar G E=> t:” .
=D E T +71
SE4T =D F 4947 7
- T .

- T XF

- F

- (E)

- a

— b

T N N oy

Derivation . _ _ (
Eomn E4T 2 THT =2 F+T =2 4T =D otk =)o E)

= ot (F)= oy (TxF)=Doa(F xE) =S adla ¥ F)

L(G) = O ~@raed awrrhuelle SPRLA => at (O\X\O)
wsag a,b, X () ’

2/10/2020 CS332 - Theory of Computation 21

Socially Awkward Professor Grammar

<PHRASE> - <FILLER><PHRASE>

LEGTURING ABOUT GRAMMARS

<PHRASE> - <START><END>
<FILLER> —> LIKE
<FILLER> - UMM

<START> - YOU KNOW

<START> - ¢
e CANT STRING
<END> - SORRY

mﬂ SENTENCE TOGETHER

<END> - S#@!

2/10/2020 CS332 - Theory of Computation 22

Socially Awkward Professor Grammar
Q)M(Vvt%’ Naw @ﬂm

<PHRASE> - <FILLER><PHRASE> | <START><END>

<FILLER> = LIKE | UMM

<START> > YOU KNOW | €

<END> -> WHOOPS | SORRY | $#@!

2/10/2020 CS332 - Theory of Computation 23

Context-Free Grammar (Formal)

A CFGisad4-tupleG = (V,2,R,S)
|/ is afinite set of variables
e) is a finite set of terminal symbols (disjoint from /)

* R is a finite set of production rules of the form A — w,
wheredA € Vandw € (VU 2)°
%

e 5 € Visthe start symbol

Example: ¢ = ({S},X,R,S) where R = {S§ — aSb,S — ¢}
S =) akvle
A {a,b?

2/10/2020 CS332 - Theory of Computation 24

Context-Free Grammar (Formal)

A CFGisad4-tupleG = (V,2,R,S)
I/ = variables 2. = terminals R =rules S = start

 We say uAv = uwv (“udv yields uwv”) if A = w is a rule of
the grammar

e Wesay u 5 v (“u derives v”) if u = v or there exists a
sequencesuchthatu > u; @ u, = - = v

e Language of the grammar: L(G) = {w € £*|S L w}

Example: G = ({S},X,R,S) whereR ={S — aS$b,S — ¢}
L(G) = {a"b™|n = 0}

2/10/2020 CS332 - Theory of Computation 25

CFG Examples 6= (J, 2 0,9)

Give context-free grammars for the following languages

S >¢ Vo3sy et P

1. The empty language 'Z: ST (ctert ven<Ve)

2. Strings of properly nested parentheses
S = (5) |95)¢

3. Strings with equal # of a’s and b’s T
O

2/10/2020 CS332 - Theory of Computation 26

Pumping Lemma ll:
Pump Harder

2/10/2020 (CS332 -Theory o f Computation

Non context-free languages?

* Could it be the case that every language is context-free?

2/10/2020 CS332 - Theory of Computation 28

Pumping Lemma for regular languages

Let L be a regular language.

Then there exists a “pumping length” p such that

For every w € L where |w| = p,
w can be split into three parts w = xyz where:

1. |y]| > 0
2. |xy| < p
3. xy'ze Lforalli = 0

2/10/2020 CS332 - Theory of Computation

29

Pumping Lemma for context-free languages

Let L be a context-free language.

Then there exists a “pumping length” p such that

For every w € L where |w| = p,
w can be splitinto five parts w = uvxyz where:

Example:
1. lvy| > 0 €. vie LE{Wf@{O 1} |W— wh}
2. |lvxy| < =0

3. uv'xy'z € Lforalli = 0

2/10/2020 CS332 - Theory of Computation 30

Pumping Lemma for context-free languages

Let L be a context-free language.

Then there exists a “pumping length” p such that

For every w € L where |w| = p,
w can be split into five parts w = uvxyz where:

Example: =7
1. |lvy| > 0 L={w €{0,1}'|lw = w®}
w = 010 SR
2. |lvxy| < 0 € AV Yv(l-
3. uv'xy'z e Lforalli = 0 -0 1o el
'l(:
Y ©

2/10/2020 CS332 - Theory of Computation 31

Pumping Lemma as a game

YOU pick the language L to be proved non context-free.
ADVERSARY picks a possible pumping length p.
YOU pick w of length at least p.

ADVERSARY divides w into u, v, x, y, z, obeying rules of the
Pumping Lemma: lvy] >0 and |vxy| <p.

A

5. YOU win by finding i = 0, for which uvixy'z is not in L.

If regardless of how the ADVERSARY plays this game, you
can always win, then L is non context-free

2/10/2020 CS332 - Theory of Computation 32

Pumping Lemma example

Claim: L = {a™b™c™|n = 0} is not regedar
M&(OA\ V7R -
Proof: Assume L is reg%hl#wnh pumping Iengthpp
e, P
1. Find w € L with [w| = p W=0o b ¢

2. Show that w cannot be pumped
If w=uvxyz with |vy| > 0,|vxy| <p, then...

) v ad g ety e o e Lnd of clamde”
AV 77?; ¢ | (4 o drpaks o won)

2) ghy VoY e to Unds o Cluades
Vi’ uxji 4L (ardy 6 wy)

2/10/2020 CS332 - Theory of Computation 33

