
BU CS 332 – Theory of Computation

Lecture 6:

• NFAs -> Regular expressions

• Context-free grammars

• Pumping lemma for CFLs

Reading:

Sipser Ch 1.3,
2.1, 2.3

Mark Bun

February 10, 2020

Regular Expressions – Syntax

A regular expression 𝑅 is defined recursively using the
following rules:

1. 𝜀, ∅, and 𝑎 are regular expressions for every 𝑎 ∈ Σ

2. If 𝑅1 and 𝑅2 are regular expressions, then so are

(𝑅1∪ 𝑅2), (𝑅1𝑅2), and (𝑅1
∗)

Examples: (over Σ = {𝑎, 𝑏, 𝑐})
𝑎𝑏 (𝑎𝑏∗ ∪ 𝑎∗𝑏)∗ ∅∗

2/10/2020 CS332 - Theory of Computation 2

Regular Expressions – Semantics

𝐿(𝑅) = the language a regular expression describes

1. 𝐿(∅) = ∅

2. 𝐿 𝜀 = 𝜀

3. 𝐿(𝑎) = {𝑎} for every 𝑎 ∈ Σ

4. 𝐿((𝑅1∪ 𝑅2)) = 𝐿(𝑅1) ∪ 𝐿(𝑅2)

5. 𝐿((𝑅1𝑅2)) = 𝐿(𝑅1) ∘ 𝐿(𝑅2)

6. 𝐿 𝑅1
∗ = (𝐿 𝑅1)∗

Example: 𝐿(𝑎∗𝑏∗) = {𝑎𝑚𝑏𝑛|𝑚, 𝑛 ≥ 0}

2/10/2020 CS332 - Theory of Computation 3

Regular Expressions Describe Regular Languages

Theorem: A language 𝐴 is regular if and only if it is
described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression

2/10/2020 CS332 - Theory of Computation 4

NFA -> Regular expression

Theorem 2: Every NFA has an equivalent regex

Proof idea: Simplify NFA by “ripping out” states one at a
time and replacing with regexes

2/10/2020 CS332 - Theory of Computation 5

0

1

0
01*0

Generalized NFAs

• Every transition is labeled by a regex

• One start state with only outgoing transitions

• Only one accept state with only incoming transitions

• Start state and accept state are distinct

2/10/2020 CS332 - Theory of Computation 6

𝑞
𝑎∗𝑏

𝑞𝑠 𝑞𝑎

𝑎 ∪ 𝑏

𝑎

Generalized NFA Example

2/10/2020 CS332 - Theory of Computation 7

𝑅(𝑞𝑠, 𝑞) =

𝑅(𝑞𝑎, 𝑞) =

𝑅(𝑞, 𝑞𝑠) =

𝑞
𝑎∗𝑏

𝑞𝑠 𝑞𝑎

𝑎 ∪ 𝑏

𝑎

NFA -> Regular expression

2/10/2020 CS332 - Theory of Computation 8

NFA GNFA

GNFA

GNFA

Regex

𝑘 states

𝑘 + 2 states

𝑘 + 1 states

2 states

…

NFA -> GNFA

2/10/2020 CS332 - Theory of Computation 9

NFAε

ε

ε

ε

• Add a new start state with no incoming arrows.
• Make a unique accept state with no outgoing arrows.

GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state

2/10/2020 CS332 - Theory of Computation 10

𝑎∗𝑏
𝑞1 𝑞3

𝑎
𝑞2

𝑞1 𝑞3

GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state

2/10/2020 CS332 - Theory of Computation 11

𝑎∗𝑏
𝑞1 𝑞3

𝑎
𝑞2

𝑎 ∪ 𝑏

𝑞1 𝑞3

GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state

2/10/2020 CS332 - Theory of Computation 12

𝑎∗𝑏
𝑞1 𝑞3

𝑎
𝑞2

𝑎 ∪ 𝑏

𝑏

𝑞1 𝑞3

GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state

2/10/2020 CS332 - Theory of Computation 13

𝑞1 𝑞3𝑞2
𝑅1

𝑅2

𝑅3

𝑅4

𝑞1 𝑞3

Example

2/10/2020 CS332 - Theory of Computation 14

2/10/2020 CS332 - Theory of Computation 15

2/10/2020 CS332 - Theory of Computation 16

Context-Free Grammars

2/10/2020 CS332 - Theory of Computation 17

Some History

An abstract model for two distinct problems

Rules for parsing natural languages

2/10/2020 CS332 - Theory of Computation 18

Some History

An abstract model for two distinct problems

Specification of syntax and compilation for programming
languages

2/10/2020 CS332 - Theory of Computation 19

1977 ACM Turing Award citation
(John Backus)

For profound, influential, and lasting
contributions to the design of practical high-
level programming systems, notably through

his work on FORTRAN, and for seminal
publication of formal procedures for the
specification of programming languages.

Context-Free Grammar (Informal)

Example Grammar 𝐺

𝐴 → 0𝐴1
𝐴 → 𝐵
𝐵 → #

Derivation

𝐿(𝐺) =

2/10/2020 CS332 - Theory of Computation 20

Context-Free Grammar (Informal)
Example Grammar 𝐺

𝐸 → 𝐸 + 𝑇
𝐸 → 𝑇
𝑇 → 𝑇 × 𝐹
𝑇 → 𝐹
𝐹 → (𝐸)
𝐹 → 𝑎
𝐹 → 𝑏

Derivation

𝐿(𝐺) =

2/10/2020 CS332 - Theory of Computation 21

Socially Awkward Professor Grammar

2/10/2020 CS332 - Theory of Computation 22

<PHRASE> → <START><END>

<PHRASE> → <FILLER><PHRASE>

<FILLER> → LIKE

<FILLER> → UMM

<START> → YOU KNOW

<END> → WHOOPS

<START> → ε

<END> → SORRY

<END> → $#@!

Socially Awkward Professor Grammar

2/10/2020 CS332 - Theory of Computation 23

<PHRASE> → <FILLER><PHRASE> | <START><END>

<FILLER> → LIKE | UMM

<START> → YOU KNOW | ε

<END> → WHOOPS | SORRY | $#@!

Context-Free Grammar (Formal)

A CFG is a 4-tuple 𝐺 = 𝑉, Σ, 𝑅, 𝑆

• 𝑉 is a finite set of variables

• Σ is a finite set of terminal symbols (disjoint from 𝑉)

• 𝑅 is a finite set of production rules of the form 𝐴 → 𝑤,
where 𝐴 ∈ 𝑉 and 𝑤 ∈ (𝑉 ∪ Σ)∗

• 𝑆 ∈ 𝑉 is the start symbol

Example: 𝐺 = ({𝑆}, Σ, 𝑅, 𝑆) where 𝑅 = {𝑆 → 𝑎𝑆𝑏, 𝑆 → 𝜀}

2/10/2020 CS332 - Theory of Computation 24

Context-Free Grammar (Formal)

A CFG is a 4-tuple 𝐺 = 𝑉, Σ, 𝑅, 𝑆

𝑉 = variables Σ = terminals 𝑅 = rules 𝑆 = start

• We say 𝑢𝐴𝑣 ⇒ 𝑢𝑤𝑣 (“𝑢𝐴𝑣 yields 𝑢𝑤𝑣”) if 𝐴 → 𝑤 is a rule of
the grammar

• We say 𝑢 ⇒
∗ 𝑣 (“𝑢 derives 𝑣”) if 𝑢 = 𝑣 or there exists a

sequence such that 𝑢 ⇒ 𝑢1 ⇒ 𝑢2 ⇒ ⋯ ⇒ 𝑣

• Language of the grammar: 𝐿 𝐺 = {𝑤 ∈ Σ∗|𝑆 ⇒
∗ 𝑤}

Example: 𝐺 = ({𝑆}, Σ, 𝑅, 𝑆) where 𝑅 = {𝑆 → 𝑎𝑆𝑏, 𝑆 → 𝜀}

𝐿 𝐺 = 𝑎𝑛𝑏𝑛 𝑛 ≥ 0}

2/10/2020 CS332 - Theory of Computation 25

CFG Examples

Give context-free grammars for the following languages

1. The empty language

2. Strings of properly nested parentheses

3. Strings with equal # of 𝑎’s and 𝑏’s

2/10/2020 CS332 - Theory of Computation 26

Pumping Lemma II:
Pump Harder

2/10/2020 CS332 - Theory of Computation 27

Non context-free languages?

• Could it be the case that every language is context-free?

2/10/2020 CS332 - Theory of Computation 28

Pumping Lemma for regular languages

2/10/2020 CS332 - Theory of Computation 29

Let 𝐿 be a regular language.

Then there exists a “pumping length” 𝑝 such that

1. |𝑦| > 0

2. |𝑥𝑦| ≤ 𝑝

3. 𝑥𝑦𝑖𝑧  𝐿 for all 𝑖 ≥ 0

For every 𝑤 ∈ 𝐿 where |𝑤| ≥ 𝑝,
𝑤 can be split into three parts 𝑤 = 𝑥𝑦𝑧 where:

Pumping Lemma for context-free languages

2/10/2020 CS332 - Theory of Computation 30

Let 𝐿 be a context-free language.

Then there exists a “pumping length” 𝑝 such that

1. |𝑣𝑦| > 0

2. |𝑣𝑥𝑦| ≤ 𝑝

3. 𝑢𝑣𝑖𝑥𝑦𝑖𝑧  𝐿 for all 𝑖 ≥ 0

For every 𝑤 ∈ 𝐿 where |𝑤| ≥ 𝑝,
𝑤 can be split into five parts 𝑤 = 𝑢𝑣𝑥𝑦𝑧 where:

Example:
𝐿 = 𝑤 ∈ 0, 1 ∗ 𝑤 = 𝑤𝑅

𝑤 = 0

Pumping Lemma for context-free languages

2/10/2020 CS332 - Theory of Computation 31

Let 𝐿 be a context-free language.

Then there exists a “pumping length” 𝑝 such that

1. |𝑣𝑦| > 0

2. |𝑣𝑥𝑦| ≤ 𝑝

3. 𝑢𝑣𝑖𝑥𝑦𝑖𝑧  𝐿 for all 𝑖 ≥ 0

For every 𝑤 ∈ 𝐿 where |𝑤| ≥ 𝑝,
𝑤 can be split into five parts 𝑤 = 𝑢𝑣𝑥𝑦𝑧 where:

Example:
𝐿 = 𝑤 ∈ 0, 1 ∗ 𝑤 = 𝑤𝑅

𝑤 = 010

Pumping Lemma as a game

2/10/2020 CS332 - Theory of Computation 32

1. YOU pick the language 𝐿 to be proved non context-free.

2. ADVERSARY picks a possible pumping length 𝑝.

3. YOU pick 𝑤 of length at least 𝑝.

4. ADVERSARY divides 𝑤 into 𝑢, 𝑣, 𝑥, 𝑦, 𝑧, obeying rules of the
Pumping Lemma: |𝑣𝑦| > 0 and |𝑣𝑥𝑦| ≤ 𝑝.

5. YOU win by finding 𝑖 ≥ 0, for which 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 is not in 𝐿.

If regardless of how the ADVERSARY plays this game, you
can always win, then 𝐿 is non context-free

Pumping Lemma example

2/10/2020 CS332 - Theory of Computation 33

Claim: 𝐿 = 𝑎𝑛𝑏𝑛𝑐𝑛 𝑛 ≥ 0} is not regular

Proof: Assume 𝐿 is regular with pumping length 𝑝

1. Find 𝑤 ∈ 𝐿 with 𝑤 ≥ 𝑝
2. Show that 𝑤 cannot be pumped

If 𝑤 = 𝑢𝑣𝑥𝑦𝑧 with |𝑣𝑦| > 0,|𝑣𝑥𝑦| ≤ 𝑝, then…

Pumping Lemma example

2/10/2020 CS332 - Theory of Computation 34

Claim: 𝐿 = 𝑎𝑛𝑏𝑛𝑐𝑛 𝑛 ≥ 0} is not regular

Proof: Assume 𝐿 is regular with pumping length 𝑝

1. Find 𝑤 ∈ 𝐿 with 𝑤 ≥ 𝑝
2. Show that 𝑤 cannot be pumped

If 𝑤 = 𝑢𝑣𝑥𝑦𝑧 with |𝑣𝑦| > 0,|𝑣𝑥𝑦| ≤ 𝑝, then…

Pumping Lemma example

2/10/2020 CS332 - Theory of Computation 35

Claim: 𝐿 = 𝑎𝑛𝑏𝑛𝑐𝑛 𝑛 ≥ 0} is not regular

Proof: Assume 𝐿 is regular with pumping length 𝑝

1. Find 𝑤 ∈ 𝐿 with 𝑤 ≥ 𝑝
2. Show that 𝑤 cannot be pumped

If 𝑤 = 𝑢𝑣𝑥𝑦𝑧 with |𝑣𝑦| > 0,|𝑣𝑥𝑦| ≤ 𝑝, then…

