BU CS 332 — Theory of Computation

Lecture 6:
* NFAs -> Regular expressions Reading:
* Context-free grammars Sipser Ch 1.3,

2.1,2.3
* Pumping lemma for CFLs

Mark Bun
February 10, 2020

Regular Expressions — Syntax

A regular expression R is defined recursively using the
following rules:

1. &, @, and a are regular expressions for every a € X

2. If Ry and R, are regular expressions, then so are
(R1UR3), (R1R3), and (R7)

Examples: (over X = {a, b, c})
ab (ab* U a*b)” 0"

2/10/2020 CS332 - Theory of Computation

Regular Expressions — Semantics

L(R) = the language a regular expression describes

L(®) =0

L(e) = {¢}

L(a) = {a}foreverya € X
L((RyU R;)) = L(Ry) U L(R3)
L((R1R3)) = L(R1) o L(R;)
L((R)) = (L(RY)®

O U1 W

Example: L(a"b*) = {a™b"|m,n = 0}

2/10/2020 CS332 - Theory of Computation

Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is
described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression

2/10/2020 CS332 - Theory of Computation 4

NFA -> Regular expression

Theorem 2: Every NFA has an equivalent regex

Proof idea: Simplify NFA by “ripping out” states one at a
time and replacing with regexes

040

Generalized NFAs

* Every transition is labeled by a regex

* One start state with only outgoing transitions

* Only one accept state with only incoming transitions
* Start state and accept state are distinct

an

~(O— @*.

Generalized NFA Example

an

~(O— @*.

R(q5,q) =
R(q, q)

R(q,qs)

NFA -> Regular expression

-

k states

k + 2 states

k + 1 states

2 states

Regex

2/10/2020 CS332 - Theory of Computation

NFA -> GNFA

t 4
NN
“%

* Add a new start state with no incoming arrows.
 Make a unique accept state with no outgoing arrows.

GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the

missing state
OEON O

GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state auUb

GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state auUb

GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the

missing state R,
R, ‘ | R,
ﬁ #

(H——©

2/10/2020

a

CS332 - Theory of Computation

14

2/10/2020

CS332 - Theory of Computation

15

2/10/2020

CS332 - Theory of Computation

16

Context-Free Grammars

2/10/2020 (CS332 - Theory of Computation

Some History

An abstract model for two distinct problems

Rules for parsing natural languages

Abstract

We investigate seversl cumceptions of
linguistic structure to determine vhether or
not they can provide simple and "revealing®
grammars that generate all of the sentences
of Boglish and only these. We find that no
finite-stats Markor process that produces
syzbols with transition from state to state
can serve as an Bnglish grammar. PFurthermore,
the particular subulass of such procesees Shat
produce n-order statistical approximations to

2/10/2020 CS332 - Theory of Computation

THRER MODELS FOR THE DESCRIPTION OF LHIGUAGB‘

Noan Chomsiy
Dopartment of Nodern Languages and Research Laboratory of Electronics
Massachusetts Institute of Technology
Caxbridge, Massachusotts

obsarvations, to show how they are interrolated,
and to predict an indefinite number of new
phenomena. A mathematical theory has the
additional property that predictions follow
rigorously from the body of theory. Similarly,
a grazmar is based on a finite nuzber of observed
sentences (the linguist's corpus) and it
"projects' this set to an infinite set of
grazmatical sentenceo by ectablishing geseral
"laws' (grammatical rules) framed in terms of

18

Some History

An abstract model for two distinct problems

Specification of syntax and compilation for programming
languages

1977 ACM Turing Award citation
(John Backus)

For profound, influential, and lasting
contributions to the design of practical high-
level programming systems, notably through

his work on FORTRAN, and for seminal
publication of formal procedures for the
specification of programming languages.

2/10/2020 CS332 - Theory of Computation 19

Context-Free Grammar (Informal)

Example Grammar G

A - 041
A - B
B > #

Derivation T
O

L(G) =

2/10/2020 CS332 - Theory of Computation

20

Context-Free Grammar (Informal)

Example Grammar G

> FE+T
- T

> T XF
- F

- (E)
- a

- b

T T 3 M

Derivation

L(G) =

2/10/2020 CS332 - Theory of Computation 21

Socially Awkward Professor Grammar

<PHRASE> - <FILLER><PHRASE>

LEGTURING ABOUT GRAMMARS

<PHRASE> - <START><END>
<FILLER> - LIKE
<FILLER> - UMM

<START> - YOU KNOW

<START> > €
<END> - WHOOPS ‘.
<END> > SORRY A SEE#E[;{}g}I:]IgE["EB

<END> - SH@!

2/10/2020 CS332 - Theory of Computation 22

Socially Awkward Professor Grammar

<PHRASE> - <FILLER><PHRASE> | <START><END>

<FILLER> = LIKE | UMM

<START> - YOU KNOW | €

<END> -> WHOOPS | SORRY | $#@!

2/10/2020 CS332 - Theory of Computation

23

Context-Free Grammar (Formal)

A CFGisa4-tuple G = (V,%,R,S)
e I/ is a finite set of variables
e 2 is a finite set of terminal symbols (disjoint from /)

* R is a finite set of production rules of the form 4 — w,
whereA € Vandw € (VU X)°

e 5 €V isthe start symbol

Example: G = ({S}, X, R,S) whereR = {S - aSbh,S — &}

2/10/2020 CS332 - Theory of Computation 24

Context-Free Grammar (Formal)

A CFGisa4-tupleG = (I/,2,R,S)
I/ = variables >, = terminals R = rules S = start

e We say uAv = uwv (“udv yields uwv”) if A = w is a rule of
the grammar

* Wesay u 5 v (“u derives v”) if u = v or there exists a
sequence suchthatu > u; 2 u, =2 - = v

* Language of the grammar: L(G) = {w € £*|S L w}

Example: ¢ = ({S},Z,R,S) whereR ={S — aSb,S — ¢}
L(G) ={a"b"|n = 0}

2/10/2020 CS332 - Theory of Computation 25

CFG Examples

Give context-free grammars for the following languages
1. The empty language
2. Strings of properly nested parentheses

3. Strings with equal # of a’s and b’s T
H

2/10/2020 CS332 - Theory of Computation 26

Pumping Lemma ll:
Pump Harder

2/10/2020 (CS332 - Theory o f Computation

Non context-free languages?

* Could it be the case that every language is context-free?

2/10/2020 CS332 - Theory of Computation 28

Pumping Lemma for regular languages

Let L be a regular language.

Then there exists a “pumping length” p such that

For every w € L where |w| = p,
w can be split into three parts w = xyz where:

1. |y| > 0
2. |xy| = p
3. xy'ze Lforalli = 0

2/10/2020 CS332 - Theory of Computation

29

Pumping Lemma for context-free languages

Let L be a context-free language.

Then there exists a “pumping length” p such that

For every w € L where |w| = p,
w can be split into five parts w = uvxyz where:

Example:
1. [vy| > 0 L={w €{0,1}"|lw = w¥}
w=20

2. |lvxy| < p
3. uv'xy'z € Lforalli = 0

2/10/2020 CS332 - Theory of Computation 30

Pumping Lemma for context-free languages

Let L be a context-free language.

Then there exists a “pumping length” p such that

For every w € L where |w| = p,
w can be split into five parts w = uvxyz where:

Example:
1. [vy| > 0 L={w €{0,1}"|lw = w¥}
w = 010

2. |lvxy| < p
3. uv'xy'z € Lforalli = 0

2/10/2020 CS332 - Theory of Computation 31

Pumping Lemma as a game

YOU pick the language L to be proved non context-free.
ADVERSARY picks a possible pumping length p.
YOU pick w of length at least p.

ADVERSARY divides w into u, v, x, y, z, obeying rules of the
Pumping Lemma: lvy] >0 and |vxy| <p.

5. YOU win by finding i = 0, for which uvixy'z is not in L.

> wnN e

If regardless of how the ADVERSARY plays this game, you
can always win, then L is non context-free

2/10/2020 CS332 - Theory of Computation 32

Pumping Lemma example

Claim: L = {a"b™c™|n = 0} is not regular T

Proof: Assume L is regular with pumping length p

1.Find w € L with |[w| = p
2. Show that w cannot be pumped
Ifw=uvxyz with |vy| > 0,|vxy| <p, then...

2/10/2020 CS332 - Theory of Computation 33

Pumping Lemma example

Claim: L = {a"b™c™|n = 0} is not regular

Proof: Assume L is regular with pumping length p

1.Find w € L with |[w| = p
2. Show that w cannot be pumped
Ifw=uvxyz with |vy| > 0,|vxy| <p, then...

Pumping Lemma example

Claim: L = {a"b™c™|n = 0} is not regular

Proof: Assume L is regular with pumping length p

1.Find w € L with |[w| = p
2. Show that w cannot be pumped
Ifw=uvxyz with |vy| > 0,|vxy| <p, then...

