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Regular Expressions – Syntax

A regular expression 𝑅 is defined recursively using the 
following rules:

1. 𝜀, ∅, and 𝑎 are regular expressions for every 𝑎 ∈ Σ

2. If 𝑅1 and 𝑅2 are regular expressions, then so are

(𝑅1∪ 𝑅2), (𝑅1𝑅2), and (𝑅1
∗)

Examples: (over Σ = {𝑎, 𝑏, 𝑐})
𝑎𝑏 (𝑎𝑏∗ ∪ 𝑎∗𝑏)∗ ∅∗
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Regular Expressions – Semantics 

𝐿(𝑅) = the language a regular expression describes

1. 𝐿(∅) = ∅

2. 𝐿 𝜀 = 𝜀

3. 𝐿(𝑎) = {𝑎} for every 𝑎 ∈ Σ

4. 𝐿((𝑅1∪ 𝑅2)) = 𝐿(𝑅1) ∪ 𝐿(𝑅2)

5. 𝐿((𝑅1𝑅2)) = 𝐿(𝑅1) ∘ 𝐿(𝑅2)

6. 𝐿 𝑅1
∗ = (𝐿 𝑅1 )∗

Example: 𝐿(𝑎∗𝑏∗) = {𝑎𝑚𝑏𝑛|𝑚, 𝑛 ≥ 0}
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Regular Expressions Describe Regular Languages

Theorem: A language 𝐴 is regular if and only if it is 
described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression
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NFA -> Regular expression

Theorem 2: Every NFA has an equivalent regex

Proof idea: Simplify NFA by “ripping out” states one at a 
time and replacing with regexes
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Generalized NFAs

• Every transition is labeled by a regex

• One start state with only outgoing transitions

• Only one accept state with only incoming transitions

• Start state and accept state are distinct
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Generalized NFA Example
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𝑅(𝑞𝑠, 𝑞) =

𝑅(𝑞𝑎, 𝑞) =

𝑅(𝑞, 𝑞𝑠) =

𝑞
𝑎∗𝑏

𝑞𝑠 𝑞𝑎

𝑎 ∪ 𝑏

𝑎



NFA -> Regular expression
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NFA -> GNFA
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NFAε

ε

ε

ε

• Add a new start state with no incoming arrows.
• Make a unique accept state with no outgoing arrows.



GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one 
out and relabel the arrows with regexes to account for the 
missing state
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𝑎∗𝑏
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GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one 
out and relabel the arrows with regexes to account for the 
missing state
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GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one 
out and relabel the arrows with regexes to account for the 
missing state

2/10/2020 CS332 - Theory of Computation 12

𝑎∗𝑏
𝑞1 𝑞3

𝑎
𝑞2

𝑎 ∪ 𝑏

𝑏

𝑞1 𝑞3



GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one 
out and relabel the arrows with regexes to account for the 
missing state
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Example
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Context-Free Grammars
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Some History

An abstract model for two distinct problems

Rules for parsing natural languages
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Some History

An abstract model for two distinct problems

Specification of syntax and compilation for programming 
languages
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1977 ACM Turing Award citation
(John Backus)

For profound, influential, and lasting 
contributions to the design of practical high-
level programming systems, notably through 

his work on FORTRAN, and for seminal 
publication of formal procedures for the 
specification of programming languages.



Context-Free Grammar (Informal)

Example Grammar 𝐺

𝐴 → 0𝐴1
𝐴 → 𝐵
𝐵 → #

Derivation

𝐿(𝐺) =
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Context-Free Grammar (Informal)
Example Grammar 𝐺

𝐸 → 𝐸 + 𝑇
𝐸 → 𝑇
𝑇 → 𝑇 × 𝐹
𝑇 → 𝐹
𝐹 → (𝐸)
𝐹 → 𝑎
𝐹 → 𝑏

Derivation

𝐿(𝐺) =
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Socially Awkward Professor Grammar
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<PHRASE> → <START><END>

<PHRASE> → <FILLER><PHRASE>

<FILLER> → LIKE

<FILLER> → UMM

<START> → YOU KNOW

<END> → WHOOPS

<START> → ε

<END> → SORRY

<END> → $#@!



Socially Awkward Professor Grammar

2/10/2020 CS332 - Theory of Computation 23

<PHRASE> → <FILLER><PHRASE> | <START><END>

<FILLER> → LIKE | UMM

<START> → YOU KNOW | ε

<END> → WHOOPS | SORRY | $#@!



Context-Free Grammar (Formal)

A CFG is a 4-tuple 𝐺 = 𝑉, Σ, 𝑅, 𝑆

• 𝑉 is a finite set of variables

• Σ is a finite set of terminal symbols (disjoint from 𝑉)

• 𝑅 is a finite set of production rules of the form 𝐴 → 𝑤, 
where 𝐴 ∈ 𝑉 and 𝑤 ∈ (𝑉 ∪ Σ)∗

• 𝑆 ∈ 𝑉 is the start symbol

Example: 𝐺 = ({𝑆}, Σ, 𝑅, 𝑆) where 𝑅 = {𝑆 → 𝑎𝑆𝑏, 𝑆 → 𝜀}
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Context-Free Grammar (Formal)

A CFG is a 4-tuple 𝐺 = 𝑉, Σ, 𝑅, 𝑆

𝑉 = variables      Σ = terminals        𝑅 = rules         𝑆 = start

• We say 𝑢𝐴𝑣 ⇒ 𝑢𝑤𝑣 (“𝑢𝐴𝑣 yields 𝑢𝑤𝑣”) if 𝐴 → 𝑤 is a rule of 
the grammar

• We say 𝑢 ⇒
∗ 𝑣 (“𝑢 derives 𝑣”) if 𝑢 = 𝑣 or there exists a 

sequence such that 𝑢 ⇒ 𝑢1 ⇒ 𝑢2 ⇒ ⋯ ⇒ 𝑣

• Language of the grammar: 𝐿 𝐺 = {𝑤 ∈ Σ∗|𝑆 ⇒
∗ 𝑤}

Example: 𝐺 = ({𝑆}, Σ, 𝑅, 𝑆) where 𝑅 = {𝑆 → 𝑎𝑆𝑏, 𝑆 → 𝜀}

𝐿 𝐺 = 𝑎𝑛𝑏𝑛 𝑛 ≥ 0}

2/10/2020 CS332 - Theory of Computation 25



CFG Examples

Give context-free grammars for the following languages

1. The empty language

2. Strings of properly nested parentheses

3. Strings with equal # of 𝑎’s and 𝑏’s

2/10/2020 CS332 - Theory of Computation 26



Pumping Lemma II: 
Pump Harder
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Non context-free languages?

• Could it be the case that every language is context-free?
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Pumping Lemma for regular languages
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Let 𝐿 be a regular language.

Then there exists a “pumping length” 𝑝 such that 

1.  |𝑦| > 0

2.  |𝑥𝑦| ≤ 𝑝

3.  𝑥𝑦𝑖𝑧  𝐿 for all 𝑖 ≥ 0

For every  𝑤 ∈ 𝐿 where |𝑤| ≥ 𝑝,
𝑤 can be split into three parts 𝑤 = 𝑥𝑦𝑧 where:



Pumping Lemma for context-free languages

2/10/2020 CS332 - Theory of Computation 30

Let 𝐿 be a context-free language.

Then there exists a “pumping length” 𝑝 such that 

1.  |𝑣𝑦| > 0

2.  |𝑣𝑥𝑦| ≤ 𝑝

3.  𝑢𝑣𝑖𝑥𝑦𝑖𝑧  𝐿 for all 𝑖 ≥ 0

For every  𝑤 ∈ 𝐿 where |𝑤| ≥ 𝑝,
𝑤 can be split into five parts 𝑤 = 𝑢𝑣𝑥𝑦𝑧 where:

Example: 
𝐿 = 𝑤 ∈ 0, 1 ∗ 𝑤 = 𝑤𝑅

𝑤 = 0



Pumping Lemma for context-free languages
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Let 𝐿 be a context-free language.

Then there exists a “pumping length” 𝑝 such that 

1.  |𝑣𝑦| > 0

2.  |𝑣𝑥𝑦| ≤ 𝑝

3.  𝑢𝑣𝑖𝑥𝑦𝑖𝑧  𝐿 for all 𝑖 ≥ 0

For every  𝑤 ∈ 𝐿 where |𝑤| ≥ 𝑝,
𝑤 can be split into five parts 𝑤 = 𝑢𝑣𝑥𝑦𝑧 where:

Example: 
𝐿 = 𝑤 ∈ 0, 1 ∗ 𝑤 = 𝑤𝑅

𝑤 = 010



Pumping Lemma as a game
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1. YOU pick the language 𝐿 to be proved non context-free.

2. ADVERSARY picks a possible pumping length 𝑝.

3. YOU pick 𝑤 of length at least 𝑝.

4. ADVERSARY divides 𝑤 into 𝑢, 𝑣, 𝑥, 𝑦, 𝑧, obeying rules of the 
Pumping Lemma:        |𝑣𝑦| > 0 and      |𝑣𝑥𝑦| ≤ 𝑝. 

5. YOU win by finding 𝑖 ≥ 0, for which 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 is not in 𝐿.

If regardless of how the ADVERSARY plays this game, you 
can always win, then 𝐿 is non context-free



Pumping Lemma example
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Claim: 𝐿 = 𝑎𝑛𝑏𝑛𝑐𝑛 𝑛 ≥ 0} is not regular

Proof: Assume 𝐿 is regular with pumping length 𝑝

1. Find 𝑤 ∈ 𝐿 with 𝑤 ≥ 𝑝
2. Show that 𝑤 cannot be pumped

If 𝑤 = 𝑢𝑣𝑥𝑦𝑧 with     |𝑣𝑦| > 0,|𝑣𝑥𝑦| ≤ 𝑝, then…



Pumping Lemma example
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Claim: 𝐿 = 𝑎𝑛𝑏𝑛𝑐𝑛 𝑛 ≥ 0} is not regular

Proof: Assume 𝐿 is regular with pumping length 𝑝

1. Find 𝑤 ∈ 𝐿 with 𝑤 ≥ 𝑝
2. Show that 𝑤 cannot be pumped

If 𝑤 = 𝑢𝑣𝑥𝑦𝑧 with     |𝑣𝑦| > 0,|𝑣𝑥𝑦| ≤ 𝑝, then…



Pumping Lemma example
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Claim: 𝐿 = 𝑎𝑛𝑏𝑛𝑐𝑛 𝑛 ≥ 0} is not regular

Proof: Assume 𝐿 is regular with pumping length 𝑝

1. Find 𝑤 ∈ 𝐿 with 𝑤 ≥ 𝑝
2. Show that 𝑤 cannot be pumped

If 𝑤 = 𝑢𝑣𝑥𝑦𝑧 with     |𝑣𝑦| > 0,|𝑣𝑥𝑦| ≤ 𝑝, then…


