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Regular Expressions — Syntax

A regular expression R is defined recursively using the
following rules:

1. &, @, and a are regular expressions for every a € X

2. If Ry and R, are regular expressions, then so are
(R1UR3), (R1R3), and (R7)

Examples: (over X = {a, b, c})
ab (ab* U a*b)” 0"
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Regular Expressions — Semantics

L(R) = the language a regular expression describes

L(®) =0

L(e) = {¢}

L(a) = {a}foreverya € X
L((RyU R;)) = L(Ry) U L(R3)
L((R1R3)) = L(R1) o L(R;)
L((R)) = (L(RY)®

O U1 W

Example: L(a"b*) = {a™b"|m,n = 0}
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Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is
described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression
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NFA -> Regular expression

Theorem 2: Every NFA has an equivalent regex

Proof idea: Simplify NFA by “ripping out” states one at a
time and replacing with regexes

040



Generalized NFAs

* Every transition is labeled by a regex

* One start state with only outgoing transitions

* Only one accept state with only incoming transitions
* Start state and accept state are distinct

an

~(O— @*.



Generalized NFA Example

an

~(O— @*.

R(q5,q) =
R(q, q)

R(q,qs)



NFA -> Regular expression

-

k states

k + 2 states

k + 1 states

2 states

Regex
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NFA -> GNFA

t 4
NN
“%

* Add a new start state with no incoming arrows.
 Make a unique accept state with no outgoing arrows.



GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the

missing state
OEON O



GNFA -> Regular expression
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GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state auUb




GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the

missing state R,
R, ‘ | R,
ﬁ #

(H——©
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Context-Free Grammars
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Some History

An abstract model for two distinct problems

Rules for parsing natural languages

Abstract

We investigate seversl cumceptions of
linguistic structure to determine vhether or
not they can provide simple and "revealing®
grammars that generate all of the sentences
of Boglish and only these. We find that no
finite-stats Markor process that produces
syzbols with transition from state to state
can serve as an Bnglish grammar. PFurthermore,
the particular subulass of such procesees Shat
produce n-order statistical approximations to

2/10/2020 CS332 - Theory of Computation

THRER MODELS FOR THE DESCRIPTION OF LHIGUAGB‘

Noan Chomsiy
Dopartment of Nodern Languages and Research Laboratory of Electronics
Massachusetts Institute of Technology
Caxbridge, Massachusotts

obsarvations, to show how they are interrolated,
and to predict an indefinite number of new
phenomena. A mathematical theory has the
additional property that predictions follow
rigorously from the body of theory. Similarly,
a grazmar is based on a finite nuzber of observed
sentences (the linguist's corpus) and it
"projects' this set to an infinite set of
grazmatical sentenceo by ectablishing geseral
"laws' (grammatical rules) framed in terms of
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Some History

An abstract model for two distinct problems

Specification of syntax and compilation for programming
languages

1977 ACM Turing Award citation
(John Backus)

For profound, influential, and lasting
contributions to the design of practical high-
level programming systems, notably through

his work on FORTRAN, and for seminal
publication of formal procedures for the
specification of programming languages.
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Context-Free Grammar (Informal)

Example Grammar G

A - 041
A - B
B > #

Derivation T
O

L(G) =
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Context-Free Grammar (Informal)

Example Grammar G

> FE+T
- T

> T XF
- F

- (E)
- a

- b

T T 3 M

Derivation

L(G) =
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Socially Awkward Professor Grammar

<PHRASE> - <FILLER><PHRASE>

LEGTURING ABOUT GRAMMARS

<PHRASE> - <START><END>
<FILLER> - LIKE
<FILLER> - UMM

<START> - YOU KNOW

<START> > €
<END> - WHOOPS ‘.
<END> > SORRY A SEE#E[;{}g}I:]IgE["EB

<END> - SH@!
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Socially Awkward Professor Grammar

<PHRASE> - <FILLER><PHRASE> | <START><END>

<FILLER> = LIKE | UMM

<START> - YOU KNOW | €

<END> -> WHOOPS | SORRY | $#@!
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Context-Free Grammar (Formal)

A CFGisa4-tuple G = (V,%,R,S)
e I/ is a finite set of variables
e 2 is a finite set of terminal symbols (disjoint from /)

* R is a finite set of production rules of the form 4 — w,
whereA € Vandw € (VU X)°

e 5 €V isthe start symbol

Example: G = ({S}, X, R,S) whereR = {S - aSbh,S — &}
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Context-Free Grammar (Formal)

A CFGisa4-tupleG = (I/,2,R,S)
I/ = variables >, = terminals R = rules S = start

e We say uAv = uwv (“udv yields uwv”) if A = w is a rule of
the grammar

* Wesay u 5 v (“u derives v”) if u = v or there exists a
sequence suchthatu > u; 2 u, =2 - = v

* Language of the grammar: L(G) = {w € £*|S L w}

Example: ¢ = ({S},Z,R,S) whereR ={S — aSb,S — ¢}
L(G) ={a"b"|n = 0}
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CFG Examples

Give context-free grammars for the following languages
1. The empty language
2. Strings of properly nested parentheses

3. Strings with equal # of a’s and b’s T
H
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Pumping Lemma ll:
Pump Harder
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Non context-free languages?

* Could it be the case that every language is context-free?
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Pumping Lemma for regular languages

Let L be a regular language.

Then there exists a “pumping length” p such that

For every w € L where |w| = p,
w can be split into three parts w = xyz where:

1. |y| > 0
2. |xy| = p
3. xy'ze Lforalli = 0
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Pumping Lemma for context-free languages

Let L be a context-free language.

Then there exists a “pumping length” p such that

For every w € L where |w| = p,
w can be split into five parts w = uvxyz where:

Example:
1. [vy| > 0 L={w €{0,1}"|lw = w¥}
w=20

2. |lvxy| < p
3. uv'xy'z € Lforalli = 0
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Pumping Lemma for context-free languages

Let L be a context-free language.

Then there exists a “pumping length” p such that

For every w € L where |w| = p,
w can be split into five parts w = uvxyz where:

Example:
1. [vy| > 0 L={w €{0,1}"|lw = w¥}
w = 010

2. |lvxy| < p
3. uv'xy'z € Lforalli = 0

2/10/2020 CS332 - Theory of Computation 31



Pumping Lemma as a game

YOU pick the language L to be proved non context-free.
ADVERSARY picks a possible pumping length p.
YOU pick w of length at least p.

ADVERSARY divides w into u, v, x, y, z, obeying rules of the
Pumping Lemma: lvy] >0 and |vxy| <p.

5. YOU win by finding i = 0, for which uvixy'z is not in L.

> wnN e

If regardless of how the ADVERSARY plays this game, you
can always win, then L is non context-free
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Pumping Lemma example

Claim: L = {a"b™c™|n = 0} is not regular T

Proof: Assume L is regular with pumping length p

1.Find w € L with |[w| = p
2. Show that w cannot be pumped
Ifw=uvxyz with |vy| > 0,|vxy| <p, then...
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