Lecture 8:

- Equivalence between PDAs and CFGs
- Closure Properties

Reading:
Sipser Ch 2.2

Mark Bun
February 18, 2020
Pushdown Automaton (the idea)

• **Nondeterministic** finite automaton + stack

• Stack has unlimited size, but machine can only manipulate (push, pop, read) symbol at the top

```
Input   a  b  a  a  ... 
```

```
Finite control
```

```
Memory: Infinite Stack
x
x
y
```

Transitions of the form:

\[p \xrightarrow{a, x \rightarrow x'} q \]
Example: Even Palindromes

\[\varepsilon, \varepsilon \rightarrow \$ \]

\[a, \varepsilon \rightarrow a \]

\[b, \varepsilon \rightarrow b \]

\[\varepsilon, \varepsilon \rightarrow \varepsilon \]

\[\varepsilon, \$ \rightarrow \varepsilon \]

\[a, a \rightarrow \varepsilon \]

\[b, b \rightarrow \varepsilon \]
Pushdown Automaton (formal)

A PDA is a 6-tuple \(M = (Q, \Sigma, \Gamma, \delta, q_0, F) \)

- \(Q \) is a finite set of states
- \(\Sigma \) is the input alphabet
- \(\Gamma \) is the stack alphabet
- \(\delta : Q \times \Sigma \varepsilon \times \Gamma \varepsilon \rightarrow P(Q \times \Gamma \varepsilon) \) is the transition function
- \(q_0 \) is the start state
- \(F \) is the set of final states

\(M \) accepts a string \(w \) if, starting from \(q_0 \) and an empty stack, there exists a path to an accept state that can be followed by reading all of \(w \).
Example

\[L = \{w \mid w \text{ has an equal number of } a\text{'s and } b\text{'s}\} \]

Algorithmic description
Example

\[L = \{w \mid w \text{ has an equal number of } a\text{'s and } b\text{'s}\} \]

State diagram
CFGs vs. PDAs

The language $L(M)$ of a PDA M is the set of all strings it accepts.

Theorem: The class of languages recognized by PDAs is exactly the context-free languages.

Theorem 1: Every CFG has an equivalent PDA

Theorem 2: Every PDA has an equivalent CFG
CFG -> PDA
CFG -> PDA Conversion

Suppose language L is generated by CFG $G = (V, \Sigma, R, S)$

Goal: Construct a PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ recognizing L

Idea: M will guess the steps of the CFG derivation of its input w, and use its stack to check the derivation

A helpful intermediate abstraction

Generalized PDA: Can push an entire string to the stack in one move
Algorithmic Description

1. Place $\$ and the start variable S on the stack

2. Repeat forever:
 a) If the top of the stack holds variable A:
 Nondeterministically guess a rule $(A \rightarrow u) \in R$
 Replace A with u on the stack

 b) If the top of the stack holds terminal σ:
 Pop σ and verify that it matches the next input char

 c) If the top of the stack holds $\$:$
 Accept if the input is empty
State Diagram

$\epsilon, \epsilon \rightarrow S\$

$q_0 \rightarrow q_{loop}$

$\epsilon, A \rightarrow u \quad [\text{for every rule } A \rightarrow u]$
$\sigma, \sigma \rightarrow \epsilon \quad [\text{for every terminal } A \rightarrow \sigma]$

$q_{loop} \rightarrow q_f$

$\epsilon, \$ \rightarrow \epsilon$

q_f
Example

- $S \rightarrow aTb$
- $T \rightarrow Ta \mid \epsilon$

Transition diagram:

- $q_0 \xrightarrow{\epsilon, \epsilon} S\$$
- $q_{loop} \xrightarrow{\epsilon, \$} \epsilon$
- q_f
Example

\[S \rightarrow aTb \]
\[T \rightarrow Ta \mid \varepsilon \]

\[S \rightarrow aTb \]
\[T \rightarrow Ta \mid \varepsilon \]

\[\varepsilon, \$ \rightarrow \varepsilon \]
PDA -> CFG
PDA -> CFG Conversion

Theorem 2: Every PDA has an equivalent CFG

Suppose L is recognized by PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$

Goal: Construct a CFG $G = (V, \Sigma, R, S)$ generating L

First simplify M so that:

1. It has a single accept state q_f
2. It empties the stack before accepting
3. Every transition either pushes a symbol or pops a symbol (but not both)
Simplification Example

\[\varepsilon, \varepsilon \rightarrow \$, \quad a, \varepsilon \rightarrow a, \quad b, \varepsilon \rightarrow b \]

\[\varepsilon, \varepsilon \rightarrow \varepsilon, \quad a, a \rightarrow \varepsilon, \quad b, b \rightarrow \varepsilon \]
Conversion Idea

Variables: A_{pq} for every pair of states p, q in PDA M

Idea: A_{pq} generates all strings that can take M from p (with an empty stack) to q (with an empty stack)

$V =$
$S =$
Example

What strings should $A_{q_0q_1}$ generate?

What strings should $A_{q_1q_3}$ generate?

What strings should $A_{q_1q_4}$ generate?

q_5
What rules should define A_{pq}?

Let x be a string generated by A_{pq}

Two cases:

1) Stack first empties after reading all of x

2) Stack empties before reaching the end of x
1. Stack first empties after reading all of x

Add rule $A_{pq} \rightarrow aA_{rs}b$
2. Stack empties before reaching the end of x

Add rule: $A_{pq} \rightarrow A_{pr}A_{rq}$
Formal CFG Construction

\[V = \{ A_{pq} \mid p, q \in Q \} \]
\[S = A_{q_0 q_f} \]

Three kinds of rules:

1. For every \(p, q, r, s \in Q, \ t \in \Gamma, \ a, b \in \Sigma_\varepsilon \):

 If \((r, t) \in \delta(p, a, \varepsilon) \) and \((q, \varepsilon) \in \delta(s, b, t) \),

 include the rule \(A_{pq} \rightarrow aA_{rs}b \)

2. For every \(p, q, r \in Q \), include the rule \(A_{pq} \rightarrow A_{pr}A_{rq} \)

3. For every \(p \in Q \), include the rule \(A_{pp} \rightarrow \varepsilon \)
Sketch of proof that CFG generates $L(M)$

Claim: $A_{pq} \Rightarrow^* x$ if and only if x takes M from p to q, beginning and ending with empty stack

Proof idea:

\Rightarrow Induction on number of steps of derivation of x from A_{pq}

\Leftarrow Induction on number of steps of computation taking M from p to q
Closure Properties
Closure Properties

• The class of CFLs is closed under
 Union
 Concatenation
 Star
 Intersection with regular languages

• Beware: It is not closed under intersection or complement
 (Find counterexamples!)
Closure under union (Proof 1)

Let A be a CFL recognized by PDA M_A and let B be a CFL recognized by PDA M_B

Goal: Construct a PDA recognizing $A \cup B$
Closure under union (Proof 2)

Let A be a CFL generated by CFG G_A and let B be a CFL recognized by CFG G_B

Goal: Construct a CFG G recognizing $A \cup B$

$G_A = (V_A, \Sigma_A, R_A, S_A)$

$G_B = (V_B, \Sigma_B, R_B, S_B)$

Relabel variables so V_A and V_B are disjoint

Let $G = (V, \Sigma, R, S)$