BU CS 332 - Theory of Computation

Lecture 11:

- TM Variants
- Closure Properties

Reading:
Sipser Ch 3.2

Mark Bun
March 1, 2020

The Basic Turing Machine (TM)

- Input is written on an infinitely long tape
- Head can both read and write, and move in both directions
- Computation halts when control reaches "accept" or "reject" state

Example

Formal Definition of a TM

A TM is a 7-tuple $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$

- Q is a finite set of states
- Σ is the input alphabet (does not include \sqcup)
- Γ is the tape alphabet (contains \sqcup and Σ)
- δ is the transition function
...more on this later
- $q_{0} \in Q$ is the start state
- $q_{\text {accept }} \in Q$ is the accept state
- $q_{\text {reject }} \in Q$ is the reject state $\left(q_{\text {reject }} \neq q_{\text {accept }}\right)$

TM Transition Function

$$
\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}
$$

L means "move left" and R means "move right"
$\delta(p, a)=(q, b, R)$ means:

- Replace a with b in current cell
- Transition from state p to state q
- Move tape head right
$\delta(p, a)=(q, b, L)$ means:
- Replace a with b in current cell
- Transition from state p to state q
- Move tape head left UNLESS we are at left end of tape, in which case don't move

Configuration of a TM

A string with captures the state of a TM together with the contents of the tape

Configuration of a TM: Formally

A configuration is a string $u q v$ where $q \in Q$ and $u, v \in \Gamma^{*}$

- Tape contents $=u v$ (followed by blanks $ப$)
- Current state =q
- Tape head on first symbol of v

How a TM Computes

Start configuration: $q_{0} w$
One step of computation:

- $u a q b v$ yields $u a c q^{\prime} v$ if $\delta(q, b)=\left(q^{\prime}, c, R\right)$
- $u a q b v$ yields $u q^{\prime} a c v$ if $\delta(q, b)=\left(q^{\prime}, c, L\right)$
- $q b v$ yields $q^{\prime} c v$ if $\delta(q, b)=\left(q^{\prime}, c, L\right)$

Accepting configuration: $q=q_{\text {accept }}$
Rejecting configuration: $q=q_{\text {reject }}$

How a TM Computes

M accepts input w if there is a sequence of configurations C_{1}, \ldots, C_{k} such that:

- $C_{1}=q_{0} w$
- C_{i} yields C_{i+1} for every i
- C_{k} is an accepting configuration
$L(M)=$ the set of all strings w which M accepts
A is Turing-recognizable if $A=L(M)$ for some TM M :
- $w \in A \Rightarrow M$ halts on w in state $q_{\text {accept }}$
- $w \notin A \Rightarrow M$ halts on w in state $q_{\text {reject }}$ OR
M runs forever

Recognizers vs. Deciders
$L(M)=$ the set of all strings w which M accepts
A is Turing-recognizable if $A=L(M)$ for some TM M :

- $w \in A \Rightarrow M$ halts on w in state $q_{\text {accept }}$
- $w \notin A \Longrightarrow M$ halts on w in state $q_{\text {reject }}$ OR M runs forever
A is (Turing-)decidable if $A=L(M)$ for some TM M which halts on every input
- $w \in A \Rightarrow M$ halts on w in state $q_{\text {accept }}$
- $w \notin A \Rightarrow M$ halts on w in state $q_{\text {reject }}$

Back to Hilbert's Tenth Problem

Computational Problem: Given a Diophantine equation, does it have a solution over the integers?
$L=$

- L is Turing-recognizable
- L is not decidable (1949-70)

TM Variants

How Robust is the TM Model?

Does changing the model result in different languages being recognizable / decidable?

So far we've seen...

- We can require that FAs/PDAs have a single accept state
- (CFGs can always be put in Chomsky Normal Form)
- Adding nondeterminism does not change the languages recognized by finite automata

Turing machines have an astonishing level of robustness

Extensions that do not increase the power of the TM model

- TMs that are allowed to "stay put" instead of moving left or right

$$
\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R, S\}
$$

Proof that TMs with "stay put" are no more powerful: Simulation: Convert any TM M with "stay put" into an equivalent TM M^{\prime} without

Replace every "stay put" instruction in M with a move right instruction, followed by a move left instruction in M^{\prime}

Extensions that do not increase the power of

 the TM model- TMs with a 2-way infinite tape, unbounded left to right Input

Tape

... | | a | b | a | | |
| :--- | :--- | :--- | :--- | :--- | :--- |$..$

Proof that TMs with 2-way infinite tapes are no more powerful:
Simulation: Convert any TM M with 2-way infinite tape into a 1-way infinite TM M^{\prime} with a "two-track tape"

Formalizing the Simulation
 $M^{\prime}=\left(Q^{\prime}, \Sigma, \Gamma^{\prime}, \delta^{\prime}, q_{0}^{\prime}, q_{\mathrm{accept}}^{\prime} q_{\mathrm{reject}}^{\prime}\right)$

New tape alphabet: $\Gamma^{\prime}=(\Gamma \times \Gamma) \cup\{\$\}$
New state set: $Q^{\prime}=Q \times\{+,-\}$
$(q,-)$ means " q, working on upper track"
$(q,+)$ means " q, working on lower track"
New transitions:
If $\delta\left(p, a_{-}\right)=(q, b, L)$, let $\delta^{\prime}\left((p,-),\left(a_{-}, a_{+}\right)\right)=\left((q,-),\left(b, a_{+}\right), R\right)$
Also need new transitions for moving right, lower track, hitting \$, initializing input into 2-track format

TMs are equivalent to...

- TMs with "stay put"
- TMs with 2-way infinite tapes
- Multi-tape TMs
- Nondeterministic TMs
- Random access TMs
- Enumerators
- Finite automata with access to an unbounded queue $=2$ stack PDAs
- Primitive recursive functions
- Cellular automata

Church-Turing Thesis

The equivalence of these models is a mathematical theorem

Church-Turing Thesis: Each of these models captures our intuitive notion of algorithms

The Church-Turing Thesis is not a mathematical statement!

Multi-Tape TMs

Fixed number of tapes $k \quad$ (can't change during computation) Transition function $\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{L, R, S\}^{k}$

Multi-Tape TMs are Equivalent to Single-Tape TMs

Theorem: Every k-tape TM M with can be simulated by an equivalent single-tape TM M^{\prime}

control	b	b	a	a	\#	a	b	ப	a	\#	ப	b	a	a	C	\#

Simulating Multiple Tapes

Implementation-Level Description

On input $w=w_{1} w_{2} \ldots w_{n}$

1. Format tape into \# $\dot{w}_{1} w_{2} \ldots w_{n} \#$ ப் \# ப் \# ... \#
2. For each move of M :

Scan left-to-right, finding current symbols Scan left-to-right, writing new symbols, Scan left-to-right, moving each tape head

If a tape head goes off the right end, insert blank If a tape head goes off left end, move back right

Why are Multi-Tape TMs Helpful?

To show a language is Turing-recognizable or decidable, suffices to construct a multi-tape TM

Very helpful for proving closure properties
Ex. Closure of recognizable languages under union. Suppose M_{1} is a single-tape TM recognizing L_{1}, M_{2} is a single-tape TM recognizing L_{2}

Non-deterministic TMs

At any point in computation, may non-deterministically branch. Accepts iff there exists an accepting branch.
Transition function $\delta: Q \times \Gamma \rightarrow P(Q \times \Gamma \times\{L, R, S\})$

Ex. NTM for $\{w \mid w$ is a binary number representing the product of two positive integers $a, b\}$

Non-deterministic TMs

Theorem: Every nondeterministic TM has an equivalent deterministic TM

Proof idea: Simulate an NTM N using a 3-tape TM

