BU CS 332 – Theory of Computation

Lecture 11:

- TM Variants
- Closure Properties

Reading: Sipser Ch 3.2

Mark Bun March 1, 2020

The Basic Turing Machine (TM)

- Input is written on an infinitely long tape
- Head can both read and write, and move in both directions
- Computation halts when control reaches "accept" or "reject" state

Formal Definition of a TM

A TM is a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$

- *Q* is a finite set of states
- Σ is the input alphabet (does **not** include \sqcup)
- Γ is the tape alphabet (contains \sqcup and Σ)
- δ is the transition function

...more on this later

- $q_0 \in Q$ is the start state
- $q_{\text{accept}} \in Q$ is the accept state
- $q_{\text{reject}} \in Q$ is the reject state ($q_{\text{reject}} \neq q_{\text{accept}}$)

TM Transition Function $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$

L means "move left" and *R* means "move right" $\delta(p, a) = (q, b, R)$ means:

- Replace *a* with *b* in current cell
- Transition from state *p* to state *q*
- Move tape head right

 $\delta(p, a) = (q, b, L)$ means:

- Replace *a* with *b* in current cell
- Transition from state *p* to state *q*
- Move tape head left UNLESS we are at left end of tape, in which case don't move

Configuration of a TM

A string with captures the state of a TM together with the contents of the tape

Configuration of a TM: Formally

A configuration is a string uqv where $q \in Q$ and $u, v \in \Gamma^*$

- Tape contents = uv (followed by blanks \sqcup)
- Current state = q
- Tape head on first symbol of v

How a TM Computes

Start configuration: $q_0 w$

One step of computation:

- $ua \ q \ bv$ yields $uac \ q' \ v$ if $\delta(q, b) = (q', c, R)$
- $ua \ q \ bv$ yields $u \ q' \ acv$ if $\delta(q, b) = (q', c, L)$
- q bv yields q' cv if $\delta(q, b) = (q', c, L)$

Accepting configuration: $q = q_{accept}$ Rejecting configuration: $q = q_{reject}$

How a TM Computes

M accepts input *w* if there is a sequence of configurations C_1, \ldots, C_k such that:

- $C_1 = q_0 w$
- C_i yields C_{i+1} for every i
- C_k is an accepting configuration

L(M) = the set of all strings w which M accepts A is Turing-recognizable if A = L(M) for some TM M:

- $w \in A \implies M$ halts on w in state q_{accept}
- $w \notin A \implies M$ halts on w in state $q_{reject} \circ \mathsf{OR}$ M runs forever

Recognizers vs. Deciders

L(M) = the set of all strings w which M accepts

A is Turing-recognizable if A = L(M) for some TM M:

- $w \in A \implies M$ halts on w in state q_{accept}
- $w \notin A \implies M$ halts on w in state $q_{reject} \circ \mathsf{OR}$ M runs forever
- A is (Turing-)decidable if A = L(M) for some TM M which halts on every input
- $w \in A \implies M$ halts on w in state q_{accept}
- $w \notin A \implies M$ halts on w in state q_{reject}

Back to Hilbert's Tenth Problem

Computational Problem: Given a Diophantine equation, does it have a solution over the integers?

L =

• *L* is Turing-recognizable

• *L* is not decidable (1949-70)

TM Variants

How Robust is the TM Model?

Does changing the model result in different languages being recognizable / decidable?

So far we've seen...

- We can require that FAs/PDAs have a single accept state
- (CFGs can always be put in Chomsky Normal Form)
- Adding nondeterminism does not change the languages recognized by finite automata

Turing machines have an astonishing level of robustness

Extensions that do not increase the power of the TM model

• TMs that are allowed to "stay put" instead of moving left or right

 $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$

Proof that TMs with "stay put" are no more powerful: Simulation: Convert any TM M with "stay put" into an equivalent TM M' without

Replace every "stay put" instruction in M with a move right instruction, followed by a move left instruction in M'

Extensions that do not increase the power of the TM model

• TMs with a 2-way infinite tape, unbounded left to right

Proof that TMs with 2-way infinite tapes are no more powerful:

Simulation: Convert any TM M with 2-way infinite tape into a 1-way infinite TM M' with a "two-track tape"

Formalizing the Simulation

$$M' = (Q', \Sigma, \Gamma', \delta', q'_0, q'_{\text{accept}}, q'_{\text{reject}})$$

New tape alphabet: $\Gamma' = (\Gamma \times \Gamma) \cup \{\$\}$ New state set: $Q' = Q \times \{+, -\}$

(q, -) means "q, working on upper track"
(q, +) means "q, working on lower track"
New transitions:

If $\delta(p, a_{-}) = (q, b, L)$, let $\delta'((p, -), (a_{-}, a_{+})) = ((q, -), (b, a_{+}), R)$

Also need new transitions for moving right, lower track, hitting \$,

initializing input into 2-track format

TMs are equivalent to...

- TMs with "stay put"
- TMs with 2-way infinite tapes
- Multi-tape TMs
- Nondeterministic TMs
- Random access TMs
- Enumerators
- Finite automata with access to an unbounded queue = 2stack PDAs
- Primitive recursive functions
- Cellular automata

. . .

Church-Turing Thesis

The equivalence of these models is a mathematical theorem

Church-Turing *Thesis*: Each of these models captures our intuitive notion of algorithms

The Church-Turing Thesis is not a mathematical statement!

Fixed number of tapes k (can't change during computation) Transition function $\delta : Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$ Multi-Tape TMs are Equivalent to Single-Tape TMs

Theorem: Every k-tape TM M with can be simulated by an equivalent single-tape TM M'

Simulating Multiple Tapes

Implementation-Level Description

On input $w = w_1 w_2 \dots w_n$

- 1. Format tape into $\# \dot{w_1} w_2 \dots w_n \# \dot{\sqcup} \# \dot{\sqcup} \# \dots \#$
- 2. For each move of *M*:

Scan left-to-right, finding current symbols Scan left-to-right, writing new symbols, Scan left-to-right, moving each tape head

If a tape head goes off the right end, insert blank If a tape head goes off left end, move back right

Why are Multi-Tape TMs Helpful?

To show a language is Turing-recognizable or decidable, suffices to construct a multi-tape TM

Very helpful for proving closure properties

Ex. Closure of recognizable languages under union. Suppose M_1 is a single-tape TM recognizing L_1 , M_2 is a single-tape TM recognizing L_2

Non-deterministic TMs

At any point in computation, may non-deterministically branch. Accepts iff there exists an accepting branch. Transition function $\delta : Q \times \Gamma \rightarrow P(Q \times \Gamma \times \{L, R, S\})$

Ex. NTM for $\{w \mid w \text{ is a binary number representing the product of two positive integers } a, b \}$

Non-deterministic TMs

Theorem: Every nondeterministic TM has an equivalent deterministic TM

Proof idea: Simulate an NTM *N* using a 3-tape TM

