Lecture 12:

- TM Variants
- Decidable Languages

Reading:
Sipser Ch 3.2, 4.1

Mark Bun
March 4, 2020
Recognizers vs. Deciders

$L(M) = \text{the set of all strings } w \text{ which } M \text{ accepts}$

A is Turing-recognizable if $A = L(M)$ for some TM M:

- $w \in A \implies M$ halts on w in state q_{accept}
- $w \notin A \implies M$ halts on w in state q_{reject} OR M runs forever

A is (Turing-)decidable if $A = L(M)$ for some TM M which halts on every input

- $w \in A \implies M$ halts on w in state q_{accept}
- $w \notin A \implies M$ halts on w in state q_{reject}
TM Variants
Extensions that do not increase the power of the TM model

- TMs with a 2-way infinite tape, unbounded left to right

Proof that TMs with 2-way infinite tapes are no more powerful:

Simulation: Convert any TM M with 2-way infinite tape into a 1-way infinite TM M' with a “two-track tape”
Formalizing the Simulation

\[M' = (Q', \Sigma, \Gamma', \delta', q_0', q'_{\text{accept}}, q'_{\text{reject}}) \]

New tape alphabet: \(\Gamma' = (\Gamma \times \Gamma) \cup \{\$\} \)

New state set: \(Q' = Q \times \{+, -\} \)

\((q, -)\) means “\(q, \) working on upper track”
\((q, +)\) means “\(q, \) working on lower track”

New transitions:

If \(\delta(p, a_-) = (q, b, L) \), let \(\delta'((p, -), (a_-, a_+)) = ((q, -), (b, a_+), R) \)

Also need new transitions for moving right, lower track, hitting $, initializing input into 2-track format
TM is equivalent to...

• TMs with “stay put”
• TMs with 2-way infinite tapes
• Multi-tape TMs
• Nondeterministic TMs
• Random access TMs
• Enumerators
• Finite automata with access to an unbounded queue = 2-stack PDAs
• Primitive recursive functions
• Cellular automata
• “Turing-complete” programming languages (C, Python, Java...)

...
Church-Turing Thesis

The equivalence of these models is a **mathematical theorem**

Church-Turing Thesis: Each of these models captures our intuitive notion of algorithms

The Church-Turing Thesis is **not** a mathematical statement!
Multi-Tape TMs

Fixed number of tapes k (can’t change during computation)
Transition function $\delta : Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L, R, S\}^k$
Multi-Tape TMs are Equivalent to Single-Tape TMs

Theorem: Every k-tape TM M with can be simulated by an equivalent single-tape TM M'
Simulating Multiple Tapes

Implementation-Level Description

On input $w = w_1w_2 \ldots w_n$

1. Format tape into $\# w_1w_2 \ldots w_n \# \sqcup \# \sqcup \# \ldots \#$

2. For each move of M:

 Scan left-to-right, storing current symbols in finite control
 Scan left-to-right, writing new symbols,
 Scan left-to-right, moving each tape head

 If a tape head goes off the right end, insert blank
 If a tape head goes off left end, move back right
Why are Multi-Tape TMs Helpful?

To show a language is Turing-recognizable or decidable, suffices to construct a multi-tape TM

Very helpful for proving **closure properties**

Ex. Closure of recognizable languages under union. Suppose M_1 is a single-tape TM recognizing L_1, M_2 is a single-tape TM recognizing L_2
Nondeterministic TMs

At any point in computation, may nondeterministically branch. Accepts iff there exists an accepting branch.

Transition function $\delta : Q \times \Gamma \rightarrow P(Q \times \Gamma \times \{L, R, S\})$

Ex. NTM for $\{w \mid w$ is a binary number representing the product of two positive integers $a, b\}$
Nondeterministic TMs

Theorem: Every nondeterministic TM has an equivalent deterministic TM

Proof idea:
Systematically try all 1-step computations, all 2-step computations, ... and see if one of them accepts
Nondeterministic TMs

Theorem: Every nondeterministic TM has an equivalent deterministic TM

Proof idea: Simulate an NTM N using a 3-tape TM

Finite control

Input w to N (read-only)

Simulation tape (run N on w using nondeterministic choices from tape 3)

Address in computation tree
Enumerators

- Starts with two blank tapes
- Prints strings to printer

\[L(E) = \{ \text{strings eventually printed by } E \} \]

- May never terminate (even if language is finite)
- May print the same string many times
Enumerable = Turing-Recognizable

Theorem: A language is Turing-recognizable \iff some enumerator enumerates it

\iff Start with an enumerator E for A and give a TM
Enumerable = Turing-Recognizable

Theorem: A language is Turing-recognizable \iff some enumerator enumerates it

\Rightarrow Start with a TM M for A and give an enumerator
Decidable Languages
1928 – The Entscheidungsproblem

The “Decision Problem”

Is there an algorithm which takes as input a formula (in first-order logic) and decides whether it’s logically valid?
Questions about regular languages

Design a TM which takes as input a DFA D and a string w, and determines whether D accepts w

How should the input to this TM be represented?

Let $D = (Q, \Sigma, \delta, q_0, F)$. List each component of the tuple separated by ;

• Represent Q by ,-separated binary strings

• Represent Σ by ,-separated binary strings

• Represent $\delta : Q \times \Sigma \rightarrow Q$ by a ,,-separated list of triples (p, a, q), ...

Denote the encoding of D, w by $\langle D, w \rangle$
Representation independence

Computability (i.e., decidability and recognizability) is not affected by the choice of encoding

Why? A TM can always convert between different encodings

For now, we can take \(\langle \quad \rangle \) to mean “any reasonable encoding”
A “universal” algorithm for recognizing regular languages

\[A_{DFA} = \{ \langle D, w \rangle \mid \text{DFA } D \text{ accepts } w \} \]

Theorem: \(A_{DFA} \) is decidable

Proof sketch: Define a TM \(M \) which on input \(\langle D, w \rangle \):

1. Check if \(\langle D, w \rangle \) is a valid encoding (reject if not)
2. Simulate \(D \) on \(w \), i.e.,
 - Tape 2: Maintain \(w \) and head location of \(D \)
 - Tape 3: Maintain state of \(D \), update according to \(\delta \)
3. Accept iff \(D \) ends in an accept state
Other decidable languages

\[A_{\text{DFA}} = \{ \langle D, w \rangle \mid \text{DFA } D \text{ accepts } w \} \]

\[A_{\text{NFA}} = \{ \langle N, w \rangle \mid \text{NFA } N \text{ accepts } w \} \]

\[A_{\text{CFG}} = \{ \langle G, w \rangle \mid \text{CFG } G \text{ generates } w \} \]
CFG Generation

Theorem: $A_{CFG} = \{\langle G, w \rangle \mid \text{CFG } G \text{ generates } w \}$ is Turing-recognizable

Proof idea: Define a TM M recognizing A_{CFG}

On input $\langle G, w \rangle$

1. Enumerate all strings that can be generated from G
 (i.e., all length-1 derivations, all length-2 derivations, ...)

2. If any of these strings equal w, accept
CFG Generation

Theorem: $A_{\text{CFG}} = \{ \langle G, w \rangle \mid \text{CFG } G \text{ generates } w \}$ is decidable

Chomsky Normal Form for CFGs:
- Can have a rule $S \rightarrow \varepsilon$
- All remaining rules of the form $A \rightarrow BC$ or $A \rightarrow a$
- Cannot have S on the RHS of any rule

Lemma: Any CFG can be converted into an equivalent CFG in Chomsky Normal Form

Lemma: If G is in Chomsky Normal Form, any nonempty string w that can be derived from G has a derivation with at most $2|w| - 1$ steps
CFG Generation

Theorem: $A_{CFG} = \{ \langle G, w \rangle \mid \text{CFG } G \text{ generates } w \}$ is decidable

Proof idea: Define a TM M recognizing A_{CFG}

On input $\langle G, w \rangle$

1. Convert G into Chomsky Normal Form
2. Enumerate all strings derivable in $\leq 2|w| - 1$ steps
3. If any of these strings equal w, accept
Mid-Semester Feedback Form

https://forms.gle/LTBELY1BoSZh8nupV6