Lecture 13:
- Mid-Semester Feedback
- Enumerators
- Decidable Languages

Reading:
Sipser Ch 4.1

Mark Bun
March 16, 2020

HW 4 due Wednesday (2 PM)
HW 5 out due Monday 3/23
What aspects of the course help you learn best?

• Examples in class
• Reviewing past homeworks/exams in class
• Textbook
• Posting materials online
• Lecture, generally
• Office hours
• In-depth problem-solving in discussion section
• Top Hat questions
• Piazza discussions / instructor response
What in the class so far has hindered your learning?

• Pace of information transmission / workload
• Criteria for formality of proofs on homework and exams
• Poor handwriting
 Is this acceptable?
• Questions in class not fully answered
• Lack of organization in discussion
• Broad concepts

• “Bureaucratic descriptions”
• “All materials concluded”
What specific changes can we make to improve your learning?

• More examples
• Post solutions / other materials online
• Discussion solutions
• More Top Hat questions
• Go slower
• More guidelines for how to solve each type of problem
• Looser grading
• Midterm too long
• More detailed slides

Thanks COVID!
Do you understand what is expected from you in this class?

• Reading the book before vs. after class
• Need to do every problem in the book to succeed?
• Lack of coordination between readings and lectures
• “I have to attend lectures, read the material in the book, do some practice problems and then attempt the homework”
• Exam grading critical over formatting vs. looser standards on homework
 - Give a lot of constructive comments, including about formatting arguments
 - Generally, we don’t take off points for something
How can you improve your own learning?

• Read the book Yes!
• Solve more practice problems
• Review HW solutions
• Come to office hours
• Time management
• Open mind to more abstract ways of thinking
Enumerators
TM\(s\) are equivalent to...

- TMs with “stay put”
- TMs with 2-way infinite tapes
- Multi-tape TMs
- Nondeterministic TMs
- Random access TMs
- Enumerators
- Finite automata with access to an unbounded queue = 2-stack PDAs
- Primitive recursive functions
- Cellular automata
- “Turing-complete” programming languages (C, Python, Java...)

...
Enumerators

- Starts with two blank tapes
- Prints strings to printer

$L(E) = \{\text{strings eventually printed by } E\}$
- May never terminate (even if language is finite)
- May print the same string many times
Enumerator Example

1. Initialize \(c = 1 \)
2. Repeat forever:
 • Calculate \(s = c^2 \) (in binary)
 • Send \(s \) to printer
 • Increment \(c \)

What language does this enumerator enumerate?

\[\exists x \mid x \text{ is a binary number representing a perfect square} \]
Enumerable = Turing-Recognizable

Theorem: A language is Turing-recognizable \iff some enumerator enumerates it

\iff Start with an enumerator E for A and give a TM

```
On input $w$:
1. Run $E$, producing $s_1, s_2, s_3, \ldots$

2. If $w$ appears in the sequence of enumerated strings, accept

Why does this work?
```

if $w \notin A$: E an enumerator $\Rightarrow w = s_i$ for some $i \Rightarrow$ accept

if $w \in A$: w never appears in list \Rightarrow TM never halts
Enumerable = Turing-Recognizable

Theorem: A language is Turing-recognizable \iff some enumerator enumerates it

\[\text{\Rightarrow Start with a TM } M \text{ for } A \text{ and give an enumerator} \]

Idea: If \(w \in A \), then \(\exists i \in \mathbb{N} \text{ s.t. } M(w) \text{ accepts after running for } i \text{ steps} \)

Enumerator: For \(S_1, S_2, S_3, \ldots \) of all strings over \(\mathbb{Z}_1^* \)

For \(i = 1, 2, 3, \ldots \):
- Run \(M \) on \(S_1 \) for \(i \) steps, run \(M \) on \(S_2 \) for \(i \) steps,
 \ldots run \(M \) on \(S_i \) for \(i \) steps
- Print every \(s \in \{ S_1, S_2, \ldots, S_i \} \) on which \(M \) accepted
Decidable Languages
1928 – The Entscheidungsproblem

The “Decision Problem”

Is there an algorithm which takes as input a formula (in first-order logic) and decides whether it’s logically valid?

"mathematical statement" "true mathematical statement"

Meta-computational problem: Is it possible to automate mathematicians?

For us: Problems about DFAs, CFGs, TMs
Questions about regular languages

Design a TM which takes as input a DFA D and a string w, and determines whether D accepts w

How should the input to this TM be represented?
Let $D = (Q, \Sigma, \delta, q_0, F)$. List each component of the tuple separated by ;

• Represent Q by ,-separated binary strings $0,1,10,11$
• Represent Σ by ,-separated binary strings $0,1$
• Represent $\delta : Q \times \Sigma \rightarrow Q$ by a ,-separated list of triples $(p, a, q), \ldots$

Denote the encoding of D, w by $\langle D, w \rangle$
Representation independence

Computability (i.e., decidability and recognizability) is not affected by the choice of encoding.

Why? A TM can always convert between different encodings.

For now, we can take ⟨ ⟩ to mean “any reasonable encoding.”
A “universal” algorithm for recognizing regular languages

\[A_{\text{DFA}} = \{ \langle D, w \rangle \mid \text{DFA } D \text{ accepts } w \} \]

Theorem: \(A_{\text{DFA}} \) is decidable

Proof: Define a 3-tape TM \(M \) on input \(\langle D, w \rangle \):

1. Check if \(\langle D, w \rangle \) is a valid encoding (reject if not)
2. Simulate \(D \) on \(w \), i.e.,
 - Tape 2: Maintain \(w \) and head location of \(D \)
 - Tape 3: Maintain state of \(D \), update according to \(\delta \)
3. Accept iff \(D \) ends in an accept state
Other decidable languages

\[A_{\text{DFA}} = \{ \langle D, w \rangle \mid \text{DFA } D \text{ accepts } w \} \]

\[A_{\text{NFA}} = \{ \langle N, w \rangle \mid \text{NFA } N \text{ accepts } w \} \]

\[A_{\text{REX}} = \{ \langle R, w \rangle \mid \text{regular expression } R \text{ generates } w \} \]

\[A_{\text{CFG}} = \{ \langle G, w \rangle \mid \text{CFG } G \text{ generates } w \} \]
CFG Generation

Theorem: $A_{\text{CFG}} = \{ \langle G, w \rangle \mid \text{CFG } G \text{ generates } w \}$ is Turing-recognizable

Proof idea: Define a TM M recognizing A_{CFG}

On input $\langle G, w \rangle$:
1. Enumerate all strings that can be generated from G (i.e., all length-1 derivations, all length-2 derivations, ...)

2. If any of these strings equal w, accept
CFG Generation

Theorem: $A_{CFG} = \{<G, w> \mid \text{CFG } G \text{ generates } w\}$ is decidable

Chomsky Normal Form for CFGs:
- Can have a rule $S \rightarrow \varepsilon$
- All remaining rules of the form $A \rightarrow BC$ or $A \rightarrow a$
- Cannot have S on the RHS of any rule

Lemma: Any CFG can be converted into an equivalent CFG in Chomsky Normal Form

Lemma: If G is in Chomsky Normal Form, any nonempty string w that can be derived from G has a derivation with at most $2|w| - 1$ steps
CFG Generation

Theorem: $A_{CFG} = \{ \langle G, w \rangle \mid \text{CFG } G \text{ generates } w \}$ is decidable

Proof idea: Define a TM M recognizing A_{CFG}

On input $\langle G, w \rangle$:
1. Convert G into Chomsky Normal Form
2. Enumerate all strings derivable in $\leq 2|w| - 1$ steps
3. If any of these strings equal w, accept
Context Free Languages are Decidable

Theorem: Every CFL L is decidable

Proof: Let G be a CFG generating L. The following TM decides L.

On input w:
1. Run the decider for A_{CFG} on input $\langle G, w \rangle$
2. Accept if the decider accepts; reject otherwise

$$\text{Decider accepts } \iff \langle G, w \rangle \in A_{CFG} \iff w \text{ generated by } G$$
Classes of Languages

- Recognizable
- Decidable
- Context Free
- Regular

(Guess)

(Pumpable)
More Examples

\[E_{\text{DFA}} = \{ \langle D \rangle \mid D \text{ is a DFA that recognizes the empty language} \} \]

\[D = \quad \rightarrow \quad \begin{array}{c} 0 \rightarrow \circ \rightarrow 0 \end{array} \quad \text{D} \notin E_{\text{DFA}} \]

\[E_{\text{CFG}} = \{ \langle G \rangle \mid G \text{ is a CFG that recognizes the empty language} \}. \]
Decidability of E_{DFA}

Theorem: $E_{DFA} = \{ \langle D \rangle \mid D \text{ is a DFA that recognizes } \emptyset \}$ is decidable

Proof: The following TM decides E_{DFA}

On input $\langle D \rangle$, where D is a DFA with n states:

1. Perform n steps of breadth-first search on state diagram of D to determine if an accept state is reachable from the start state
2. Accept if an accept state reachable; reject otherwise
Decidability of E_{CFG}

Theorem: $E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG that recognizes } \emptyset \}$ is decidable

Proof: The following TM decides E_{CFG}

On input $\langle G \rangle$, where G is a CFG with n states:

1. Mark all terminal symbols in G

2. Repeat until no new variable is marked:
 - Mark any variable A where G has a rule $A \rightarrow U_1 U_2 \ldots U_k$ and every symbol U_1, \ldots, U_k is marked

3. Accept if the start variable is unmarked; else reject
New Deciders from Old

\[EQ_{\text{DFA}} = \{ \langle D_1, D_2 \rangle \mid D_1, D_2 \text{ are DFAs and } L(D_1) = L(D_2) \} \]

Theorem: \(EQ_{\text{DFA}} \) is decidable

Proof: The following TM decides \(EQ_{\text{DFA}} \)

On input \(\langle D_1, D_2 \rangle \), where \(\langle D_1, D_2 \rangle \) are DFAs:

1. Construct a DFA \(D \) that recognizes the **symmetric difference** \(L(D_1) \triangle L(D_2) \)
 \[
 \triangle = \{ w \mid w \text{ is in exactly one of } L(D_1) \text{ or } L(D_2) \}
 \]
 \[
 L(D_1) \neq L(D_2) \iff L(D_1) \triangle L(D_2) = \emptyset
 \]
2. Run the decider for \(E_{\text{DFA}} \) on \(\langle D \rangle \) and return its output
Symmetric Difference

\[A \Delta B = \{w \mid w \in A \text{ or } w \in B \text{ but not both}\} \]

\[A \Delta B = (A \setminus B) \cup (B \setminus A) \]

\[= (A \cap \overline{B}) \cup (B \cap \overline{A}) \]

Using closure constructs, we can construct a

NFA recognizing \(L(0_1) \Delta L(0_2) \)