BU CS 332 – Theory of Computation

Lecture 15:

- Undecidable and Unrecognizable Languages
- Reductions

Reading: Sipser Ch 4.2, 5.1

- Ash greshens about MW
after class today
- MW 6 released, due MM.
Warch 30

Mark Bun _ Midter n 2: 24-hr tale-have March 23, 2020 exam, released 2:30 4/1, the (on Grades-ope) @ 2:30 4/2

How can we compare sizes of infinite sets?

Definition: Two sets have the same size if there is a correspondence (bijection) between them

A set is countable if

- it is a finite set, or
- it has the same size as \mathbb{N} , the set of natural numbers

A general theorem about set sizes

Theorem: Let X be a set. Then the power set P(X) does **not** have the same size as X.

Proof: Assume for the sake of contradiction that there is a correspondence $f: X \to P(X)$

Goal: Use diagonalization to construct a set $S \in P(X)$ that cannot be the output f(x) for any $x \in X$

Undecidable Languages

Problems in language theory

Acceptance problem

Empleness testing

E quality

A _{DFA} decidable	A _{CFG} decidable	A _{TM} ?
E _{DFA} decidable	E _{CFG} decidable	E _{TM} ?
EQ _{DFA} decidable	EQ _{CFG} ?	EQ _{TM} ?

Undecidability

These natural computational questions about computational models are **undecidable**

I.e., computers cannot solve these problems no matter how much time they are given

An existential proof

Theorem: There exists an undecidable language over $\{0, 1\}$

A simplifying assumption: Every string in $\{0,1\}^*$ is the encoding $\langle M \rangle$ of some Turing machine M

Set of all Turing machines: $X = \{0, 1\}^*$

Set of all languages over $\{0, 1\}$: all subsets of $\{0, 1\}^*$ = P(X)

There are more languages than there are TM deciders!

An existential proof

Theorem: There exists an unrecognizable language over $\{0, 1\}$ Proof:

A simplifying assumption: Every string in $\{0, 1\}^*$ is the encoding $\langle M \rangle$ of some Turing machine M

```
Set of all Turing machines: X = \{0, 1\}^*
Set of all languages over \{0, 1\}: all subsets of \{0, 1\}^*
= P(X)
```

There are more languages than there are TM recognizers!

An explicit undecidable language

TM M			
M_1			
M_2			
M_3			
M_4			
:			

An explicit undecidable language

TM M	$M(\langle M_1 \rangle)$?	$M(\langle M_2 \rangle)$?	$M(\langle M_3 \rangle)$?	$M(\langle M_4 \rangle)$?		$D(\langle D \rangle)$?
M_1	* N	N	Υ	Υ		
M_2	N	MY	Υ	Υ		
M_3	Υ	Υ	X N	N		
M_4	N	N	Υ	AL Y		
i					٠.,	
D						44

Cell in row i, column's
$$= \begin{cases} Y & \text{if } M; \text{ accepts on input } CM; \end{cases}$$

$$L = \{\langle M \rangle \mid M \text{ is a TM that does not accept on input } \langle M \rangle\}$$

$$\text{Suppose } D \text{ decides } L \qquad \qquad = 3 \text{CM} \text{ Things diagon } \text{ on some } CM \}$$

An explicit undecidable language

Theorem: $L = \{\langle M \rangle \mid M \text{ is a TM that does not accept on input } \langle M \rangle \}$ is undecidable $\langle M \rangle \in \mathcal{L} = \mathcal{L}$

Claim:
$$O(\langle 0\rangle)$$
 is not rell-defield

 $O(\langle 0\rangle)$ accepts \Rightarrow $\langle 0\rangle \in L$ $\langle 1\rangle \Rightarrow$ $O(\langle 0\rangle)$ down not accept \Rightarrow $O(\langle 0\rangle)$ does not accept \Rightarrow $O(\langle 0\rangle)$ does

Corollary: $SA_{TM} = \overline{L} = \{\langle M \rangle \mid M \text{ is a TM that accepts on input } \langle M \rangle \}$ is undecidable (helper de Hay). Closed under complete (helper)

A more useful undecidable language

 $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$

Theorem: A_{TM} is undecidable

But first: A_{TM} is Turing-recognizable

The following "universal TM" U recognizes A_{TM}

On input $\langle M, w \rangle$:

- 1. Simulate running *M* on input *w*
- 2. If *M* accepts, accept. If *M* rejects, reject.

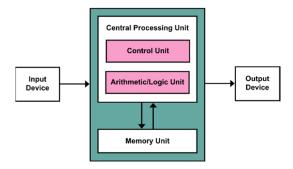
More on the Universal TM

"It is possible to invent a single machine which can be used to compute any computable sequence. If this machine **U** is supplied with a tape on the beginning of which is written the S.D ["standard description"] of some computing machine **M**, then **U** will compute the same sequence as **M**."

- Turing, "On Computable Numbers..." 1936

- Foreshadowed general-purpose programmable computers
- No need for specialized hardware: Virtual machines as software

Harvard architecture: Separate instruction and data pathways



von Neumann architecture: Programs can be treated as data

A more useful undecidable language

 $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$

Theorem: A_{TM} is undecidable

Proof: Assume for the sake of contradiction that TM H decides $A_{\rm TM}$:

$$H(\langle M, w \rangle) = \begin{cases} \text{accept} & \text{if } M \text{ accepts } w \\ \text{reject} & \text{if } M \text{ does not accept } w \end{cases}$$

Idea: Show that H can be used to decide the (undecidable) language $SA_{\rm TM}$ -- a contradiction.

A more useful undecidable language

 $A_{\text{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts input } w\}$

Suppose H decides A_{TM}

Consider the following TM D. On input $\langle M \rangle$ where M is a TM:

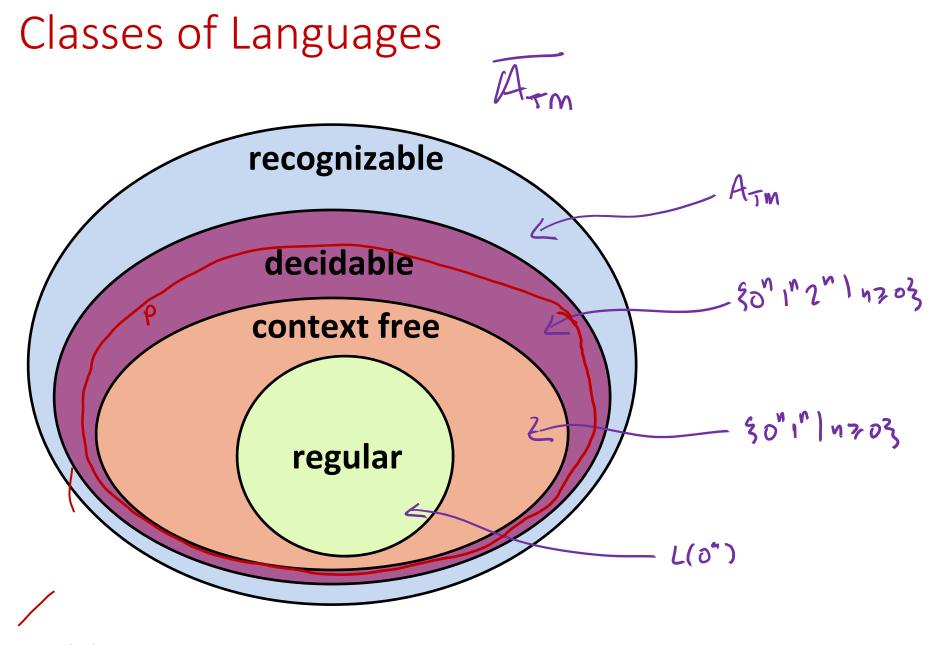
- 1. Run H on input $\langle M, \langle M \rangle \rangle$
- 2. If *H* accepts, accept. If *H* rejects, reject.

(M) & SATM => M(CM>) accept => M(CM) accepts => M(CM>) does not accept => H(CM,CM,>) resects => M(CM>) resects

Claim: D decides $SA_{TM} = \{\langle M \rangle \mid M \text{ is a TM that accepts on input } \langle M \rangle \}$...but this language is undecidable

Unrecognizable Languages

Theorem: A language L is decidable if and only if L and \overline{L} are both Turing-recognizable. (L undecidable + L recognizable)



Reductions

A more useful undecidable language

 $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$

Theorem: A_{TM} is undecidable

Proof: Assume for the sake of contradiction that TM H decides $A_{\rm TM}$:

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

Idea: Show that H can be used to decide the (undecidable) language $SA_{\rm TM}$ -- a contradiction.

"A reduction from SA_{TM} to A_{TM} "

Scientists vs. Engineers

A computer scientist and an engineer are stranded on a desert island. They find two palm trees with one coconut on each. The engineer climbs a tree, picks a coconut and eats.

The computer scientist climbs the second tree, picks a coconut, climbs down, climbs up the first tree and places it there, declaring success.

"Now we've reduced the problem to one we've already solved."

Reductions

A reduction from problem A to problem B is an algorithm for problem A which uses an algorithm for problem B as a subroutine

If such a reduction exists, we say "A reduces to B"

Two uses of reductions

Algorithm for 15 => Algorithm for A

Positive uses: If A reduces to B and B is decidable, then A is also decidable

A

 $EQ_{DFA} \Rightarrow \{\langle D_1, D_2 \rangle | D_1, D_2 \text{ are DFAs and } L(D_1) = L(D_2)\}$

Theorem: EQ_{DFA} is decidable

Proof: The following TM decides EQ_{DFA}

On input $\langle D_1, D_2 \rangle$, where $\langle D_1, D_2 \rangle$ are DFAs:

- 1. Construct a DFA D that recognizes the symmetric difference $L(D_1) \triangle L(D_2)$
- 2. Run the decider for E_{DFA} on $\langle D \rangle$ and return its output

Two uses of reductions

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

 $A_{\text{TM}} \neq \{\langle M, w \rangle \mid M \text{ is a TM that accepts input } w\}$ Suppose H decides A_{TM}

Consider the following TM D.

On input $\langle M \rangle$ where M is a TM:

- 1. Run H on input $\langle M, \langle M \rangle \rangle$
- 2. If *H* accepts, accept. If *H* rejects, reject.

Claim: D decides

Two uses of reductions

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

Proof template:

- 1. Suppose to the contrary that B is decidable
- 2. Using B as a subroutine, construct an algorithm deciding A
- 3. But A is undecidable. Contradiction!

Halting Problem

 $HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that halts on input } w\}$

Theorem: $HALT_{TM}$ is undecidable

Proof: Suppose for contradiction that there exists a decider H for $HALT_{TM}$. We construct a decider for A_{TM} as follows:

On input $\langle M, w \rangle$:

- 1. Run H on input $\langle M, w \rangle$
- If H rejects, reject
- If H accepts, simulate M on w

4. If *M* accepts, accept. Otherwise, reject

be runce Um undridge ble

LM, w) (ATM => M haits and accets on w => M (CM, w>) accepts, macept (<m,~>) re jects

This is a reduction from $A_{\rm TM}$ to $HALT_{\rm TM}$

Empty language testing for TMs

$$E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$$

Theorem: E_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for $E_{\rm TM}$. We construct a decider for $A_{\rm TM}$ as follows:

On input $\langle M, w \rangle$:

1. Run *R* on input ???

Empty language testing for TMs

$$E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$$

Theorem: E_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for E_{TM} . We construct a decider for A_{TM} as follows:

On input $\langle M, w \rangle$:

1. Construct a TM M' as follows:

3. If $R \mapsto e^{\lambda} e^{\lambda} s$, accept. Otherwise, reject

This is a reduction from $A_{\rm TM}$ to $E_{\rm TM}$