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How can we compare sizes of infinite sets?
Definition: Two sets have the same size if there is a 
correspondence (bijection) between them

A set is countable if
• it is a finite set, or
• it has the same size as ℕ, the set of natural numbers

3/23/2020 CS332 - Theory of Computation 2



A general theorem about set sizes
Theorem: Let 𝑋𝑋 be a set. Then the power set 𝑃𝑃(𝑋𝑋) does 
not have the same size as 𝑋𝑋.

Proof: Assume for the sake of contradiction that there is a 
correspondence 𝑓𝑓:𝑋𝑋 → 𝑃𝑃(𝑋𝑋)

Goal: Use diagonalization to construct a set 𝑆𝑆 ∈ 𝑃𝑃(𝑋𝑋) that 
cannot be the output 𝑓𝑓(𝑥𝑥) for any 𝑥𝑥 ∈ 𝑋𝑋
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Undecidable Languages
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Problems in language theory
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Undecidability
These natural computational questions about 
computational models are undecidable

I.e., computers cannot solve these problems no matter 
how much time they are given
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An existential proof
Theorem: There exists an undecidable language over {0, 1}
Proof: 
A simplifying assumption: Every string in {0, 1}∗ is the 
encoding 𝑀𝑀 of some Turing machine 𝑀𝑀

Set of all Turing machines:  𝑋𝑋 = {0, 1}∗

Set of all languages over {0, 1}:

There are more languages than there are TM deciders!
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all subsets of {0, 1}∗
= 𝑃𝑃(𝑋𝑋)



An existential proof
Theorem: There exists an unrecognizable language over {0, 1}
Proof: 
A simplifying assumption: Every string in {0, 1}∗ is the 
encoding 𝑀𝑀 of some Turing machine 𝑀𝑀

Set of all Turing machines:  𝑋𝑋 = {0, 1}∗

Set of all languages over {0, 1}:

There are more languages than there are TM recognizers!
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all subsets of {0, 1}∗
= 𝑃𝑃(𝑋𝑋)



An explicit undecidable language
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TM 𝑀𝑀

𝑀𝑀1

𝑀𝑀2

𝑀𝑀3

𝑀𝑀4

…



An explicit undecidable language
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TM 𝑀𝑀 𝑀𝑀( 𝑀𝑀1 )? 𝑀𝑀( 𝑀𝑀2 )? 𝑀𝑀( 𝑀𝑀3 )? 𝑀𝑀( 𝑀𝑀4 )?

𝑀𝑀1 Y N Y Y
𝑀𝑀2 N N Y Y
𝑀𝑀3 Y Y Y N
𝑀𝑀4 N N Y N

…

…

𝐿𝐿 = 𝑀𝑀 𝑀𝑀 is a TM that does not accept on input 𝑀𝑀 }
Suppose 𝐷𝐷 decides 𝐿𝐿

𝐷𝐷( 𝐷𝐷 )?

𝐷𝐷



An explicit undecidable language
Theorem: 𝐿𝐿 = 𝑀𝑀 𝑀𝑀 is a TM that does not accept on
input 𝑀𝑀 } is undecidable
Proof: Suppose for contradiction, that 𝐷𝐷 decides 𝐿𝐿

Corollary: 𝑆𝑆𝑆𝑆TM = �𝐿𝐿 = 𝑀𝑀 𝑀𝑀 is a TM that accepts on
input 𝑀𝑀 } is undecidable3/23/2020 CS332 - Theory of Computation 11



A more useful undecidable language
𝑆𝑆TM = 𝑀𝑀,𝑤𝑤 𝑀𝑀 is a TM that accepts input 𝑤𝑤}
Theorem: 𝑆𝑆TM is undecidable

But first: 𝑆𝑆TM is Turing-recognizable
The following “universal TM” 𝑈𝑈 recognizes 𝑆𝑆TM

On input 𝑀𝑀,𝑤𝑤 :
1. Simulate running 𝑀𝑀 on input 𝑤𝑤
2. If 𝑀𝑀 accepts, accept. If 𝑀𝑀 rejects, reject.
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More on the Universal TM
"It is possible to invent a single machine which can be used to compute any 
computable sequence. If this machine U is supplied with a tape on the beginning of 
which is written the S.D ["standard description"] of some computing machine M, 
then U will compute the same sequence as M.”

- Turing, “On Computable Numbers…” 1936

• Foreshadowed general-purpose programmable computers
• No need for specialized hardware: Virtual machines as software
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Harvard architecture: 
Separate instruction and data pathways

von Neumann architecture: 
Programs can be treated as data



A more useful undecidable language
𝑆𝑆TM = 𝑀𝑀,𝑤𝑤 𝑀𝑀 is a TM that accepts input 𝑤𝑤}
Theorem: 𝑆𝑆TM is undecidable
Proof: Assume for the sake of contradiction that TM 𝐻𝐻
decides 𝑆𝑆TM:

𝐻𝐻 𝑀𝑀,𝑤𝑤 = � accept if 𝑀𝑀 accepts 𝑤𝑤
reject if 𝑀𝑀 does not accept 𝑤𝑤

Idea: Show that 𝐻𝐻 can be used to decide the 
(undecidable) language 𝑆𝑆𝑆𝑆TM -- a contradiction. 
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A more useful undecidable language
𝑆𝑆TM = 𝑀𝑀,𝑤𝑤 𝑀𝑀 is a TM that accepts input 𝑤𝑤}
Suppose 𝐻𝐻 decides 𝑆𝑆TM

Consider the following TM 𝐷𝐷.
On input 𝑀𝑀 where 𝑀𝑀 is a TM:
1. Run 𝐻𝐻 on input 𝑀𝑀, 𝑀𝑀
2. If 𝐻𝐻 accepts, accept. If 𝐻𝐻 rejects, reject.

Claim: 𝐷𝐷 decides 
𝑆𝑆𝑆𝑆TM = 𝑀𝑀 𝑀𝑀 is a TM that accepts on input 𝑀𝑀 }

…but this language is undecidable
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Unrecognizable Languages
Theorem: A language 𝐿𝐿 is decidable if and only if 𝐿𝐿 and �𝐿𝐿
are both Turing-recognizable.
Proof:
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Classes of Languages
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context free

regular

recognizable

decidable



Reductions
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A more useful undecidable language
𝑆𝑆TM = 𝑀𝑀,𝑤𝑤 𝑀𝑀 is a TM that accepts input 𝑤𝑤}
Theorem: 𝑆𝑆TM is undecidable
Proof: Assume for the sake of contradiction that TM 𝐻𝐻
decides 𝑆𝑆TM:

𝐻𝐻 𝑀𝑀,𝑤𝑤 = � accept if 𝑀𝑀 accepts 𝑤𝑤
reject if 𝑀𝑀 does not accept 𝑤𝑤

Idea: Show that 𝐻𝐻 can be used to decide the 
(undecidable) language 𝑆𝑆𝑆𝑆TM -- a contradiction. 

“A reduction from 𝑆𝑆𝑆𝑆TM to 𝑆𝑆TM”
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Scientists vs. Engineers
A computer scientist and an engineer are stranded on a 
desert island. They find two palm trees with one coconut 
on each. The engineer climbs a tree, picks a coconut and 
eats.

The computer scientist climbs the second tree, picks a 
coconut, climbs down, climbs up the first tree and places 
it there, declaring success. 
“Now we’ve reduced the problem to one we’ve already 
solved.”
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Reductions

A reduction from problem 𝑆𝑆 to problem 𝐵𝐵 is an algorithm 
for problem 𝑆𝑆 which uses an algorithm for problem 𝐵𝐵 as a 
subroutine

If such a reduction exists, we say “𝑆𝑆 reduces to 𝐵𝐵”
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Two uses of reductions
Positive uses: If 𝑆𝑆 reduces to 𝐵𝐵 and 𝐵𝐵 is decidable, then 𝑆𝑆
is also decidable
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𝐸𝐸𝑄𝑄DFA = ⟨𝐷𝐷1,𝐷𝐷2⟩ 𝐷𝐷1,𝐷𝐷2 are DFAs and 𝐿𝐿(𝐷𝐷1) = 𝐿𝐿(𝐷𝐷2)}
Theorem: 𝐸𝐸𝑄𝑄DFA is decidable
Proof: The following TM decides 𝐸𝐸𝑄𝑄DFA

On input ⟨𝐷𝐷1,𝐷𝐷2⟩ , where 𝐷𝐷1,𝐷𝐷2 are DFAs:
1. Construct a DFA 𝐷𝐷 that recognizes the symmetric 

difference 𝐿𝐿(𝐷𝐷1) △ 𝐿𝐿(𝐷𝐷2)
2. Run the decider for 𝐸𝐸DFA on 𝐷𝐷 and return its output



Two uses of reductions
Negative uses: If 𝑆𝑆 reduces to 𝐵𝐵 and 𝑆𝑆 is undecidable, 
then 𝐵𝐵 is also undecidable
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𝑆𝑆TM = 𝑀𝑀,𝑤𝑤 𝑀𝑀 is a TM that accepts input 𝑤𝑤}
Suppose 𝐻𝐻 decides 𝑆𝑆TM

Consider the following TM 𝐷𝐷.
On input 𝑀𝑀 where 𝑀𝑀 is a TM:
1. Run 𝐻𝐻 on input 𝑀𝑀, 𝑀𝑀
2. If 𝐻𝐻 accepts, accept. If 𝐻𝐻 rejects, reject.

Claim: 𝐷𝐷 decides 
𝑆𝑆𝑆𝑆TM = 𝑀𝑀 𝑀𝑀 is a TM that accepts on input 𝑀𝑀 }



Two uses of reductions
Negative uses: If 𝑆𝑆 reduces to 𝐵𝐵 and 𝑆𝑆 is undecidable, 
then 𝐵𝐵 is also undecidable

Proof template:
1. Suppose to the contrary that 𝐵𝐵 is decidable
2. Using 𝐵𝐵 as a subroutine, construct an algorithm 

deciding 𝑆𝑆
3. But 𝑆𝑆 is undecidable. Contradiction!
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Halting Problem
𝐻𝐻𝑆𝑆𝐿𝐿𝐻𝐻TM = 𝑀𝑀,𝑤𝑤 𝑀𝑀 is a TM that halts on input 𝑤𝑤}

Theorem: 𝐻𝐻𝑆𝑆𝐿𝐿𝐻𝐻TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝐻𝐻
for 𝐻𝐻𝑆𝑆𝐿𝐿𝐻𝐻TM. We construct a decider for 𝑆𝑆TM as follows:
On input 𝑀𝑀,𝑤𝑤 :
1. Run 𝐻𝐻 on input 𝑀𝑀,𝑤𝑤
2. If 𝐻𝐻 rejects, reject
3. If 𝐻𝐻 accepts, simulate 𝑀𝑀 on 𝑤𝑤
4. If 𝑀𝑀 accepts, accept. Otherwise, reject

This is a reduction from 𝑆𝑆TM to 𝐻𝐻𝑆𝑆𝐿𝐿𝐻𝐻TM
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Empty language testing for TMs
𝐸𝐸TM = 𝑀𝑀 𝑀𝑀 is a TM and 𝐿𝐿 𝑀𝑀 = ∅}

Theorem: 𝐸𝐸TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅𝑅
for 𝐸𝐸TM. We construct a decider for 𝑆𝑆TM as follows:
On input 𝑀𝑀,𝑤𝑤 :
1. Run 𝑅𝑅 on input ???

This is a reduction from 𝑆𝑆TM to 𝐸𝐸TM
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Empty language testing for TMs
𝐸𝐸TM = 𝑀𝑀 𝑀𝑀 is a TM and 𝐿𝐿 𝑀𝑀 = ∅}

Theorem: 𝐸𝐸TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅𝑅
for 𝐸𝐸TM. We construct a decider for 𝑆𝑆TM as follows:
On input 𝑀𝑀,𝑤𝑤 :
1. Construct a TM 𝑀𝑀𝑀 as follows:

2. Run 𝑅𝑅 on input 𝑀𝑀′
3. If 𝑅𝑅 , accept. Otherwise, reject

This is a reduction from 𝑆𝑆TM to 𝐸𝐸TM
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Context-free language testing for TMs
𝐶𝐶𝐶𝐶𝐿𝐿TM = 𝑀𝑀 𝑀𝑀 is a TM and 𝐿𝐿 𝑀𝑀 is context − free}

Theorem: 𝐶𝐶𝐶𝐶𝐿𝐿TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅𝑅
for 𝐶𝐶𝐶𝐶𝐿𝐿TM. We construct a decider for 𝑆𝑆TM as follows:
On input 𝑀𝑀,𝑤𝑤 :
1. Construct a TM 𝑀𝑀𝑀 as follows:

2. Run 𝑅𝑅 on input 𝑀𝑀′
3. If 𝑅𝑅 accepts, accept. Otherwise, reject

This is a reduction from 𝑆𝑆TM to 𝐶𝐶𝐶𝐶𝐿𝐿TM
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Context-free language testing for TMs
𝐶𝐶𝐶𝐶𝐿𝐿TM = 𝑀𝑀 𝑀𝑀 is a TM and 𝐿𝐿 𝑀𝑀 is context − free}

Theorem: 𝐶𝐶𝐶𝐶𝐿𝐿TM is undecidable
Proof: Suppose for contradiction that there exists a decider 𝑅𝑅
for 𝐶𝐶𝐶𝐶𝐿𝐿TM. We construct a decider for 𝑆𝑆TM as follows:
On input 𝑀𝑀,𝑤𝑤 :
1. Construct a TM 𝑀𝑀𝑀 as follows:

𝑀𝑀𝑀 = “On input 𝑥𝑥,
1. If 𝑥𝑥 ∈ 0𝑛𝑛1𝑛𝑛2𝑛𝑛 𝑛𝑛 ≥ 0}, accept
2. Run TM 𝑀𝑀 on input 𝑤𝑤
3. If 𝑀𝑀 accepts, accept.”

2. Run 𝑅𝑅 on input 𝑀𝑀′
3. If 𝑅𝑅 accepts, accept. Otherwise, reject

This is a reduction from 𝑆𝑆TM to 𝐶𝐶𝐶𝐶𝐿𝐿TM
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