Lecture 15:

- Undecidable and Unrecognizable Languages
- Reductions

Reading:
Sipser Ch 4.2, 5.1

Mark Bun
March 23, 2020
How can we compare sizes of infinite sets?

Definition: Two sets have **the same size** if there is a correspondence (bijection) between them

A set is **countable** if

- it is a finite set, or
- it has the same size as \(\mathbb{N} \), the set of natural numbers
A general theorem about set sizes

Theorem: Let X be a set. Then the power set $P(X)$ does **not** have the same size as X.

Proof: Assume for the sake of contradiction that there is a correspondence $f : X \rightarrow P(X)$

Goal: Use diagonalization to construct a set $S \in P(X)$ that cannot be the output $f(x)$ for any $x \in X$
Undecidable Languages
Problems in language theory

<table>
<thead>
<tr>
<th>A_{DFA}</th>
<th>A_{CFG}</th>
<th>A_{TM}</th>
</tr>
</thead>
<tbody>
<tr>
<td>decidable</td>
<td>decidable</td>
<td>?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E_{DFA}</th>
<th>E_{CFG}</th>
<th>E_{TM}</th>
</tr>
</thead>
<tbody>
<tr>
<td>decidable</td>
<td>decidable</td>
<td>?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EQ_{DFA}</th>
<th>EQ_{CFG}</th>
<th>EQ_{TM}</th>
</tr>
</thead>
<tbody>
<tr>
<td>decidable</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Undecidability

These natural computational questions about computational models are *undecidable*.

I.e., computers cannot solve these problems no matter how much time they are given.
An existential proof

Theorem: There exists an undecidable language over \(\{0, 1\} \)

Proof:

A simplifying assumption: Every string in \(\{0, 1\}^* \) is the encoding \(\langle M \rangle \) of some Turing machine \(M \)

Set of all Turing machines: \(X = \{0, 1\}^* \)

Set of all languages over \(\{0, 1\} \): all subsets of \(\{0, 1\}^* \)
\[= P(X) \]

There are more languages than there are TM deciders!
An existential proof

Theorem: There exists an unrecognizable language over \(\{0, 1\} \)

Proof:

A simplifying assumption: Every string in \(\{0, 1\}^* \) is the encoding \(\langle M \rangle \) of some Turing machine \(M \)

Set of all Turing machines: \(X = \{0, 1\}^* \)

Set of all languages over \(\{0, 1\} \): all subsets of \(\{0, 1\}^* \)
\[= \mathcal{P}(X) \]

There are more languages than there are TM recognizers!
An explicit undecidable language

<table>
<thead>
<tr>
<th>TM M</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An explicit undecidable language

<table>
<thead>
<tr>
<th>TM M</th>
<th>$M(\langle M_1 \rangle)$?</th>
<th>$M(\langle M_2 \rangle)$?</th>
<th>$M(\langle M_3 \rangle)$?</th>
<th>$M(\langle M_4 \rangle)$?</th>
<th>$D(\langle D \rangle)$?</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>M_2</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>M_3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>M_4</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\ddots</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$L = \{ \langle M \rangle \mid M$ is a TM that does not accept on input $\langle M \rangle \}$

Suppose D decides L
An explicit undecidable language

Theorem: \(L = \{ \langle M \rangle \mid M \text{ is a TM that does not accept on input } \langle M \rangle \} \) is undecidable

Proof: Suppose for contradiction, that \(D \) decides \(L \)

Corollary: \(SA_{\text{TM}} = \overline{L} = \{ \langle M \rangle \mid M \text{ is a TM that accepts on input } \langle M \rangle \} \) is undecidable
A more useful undecidable language

\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \} \]

Theorem: \(A_{TM} \) is undecidable

But first: \(A_{TM} \) *is* Turing-recognizable

The following “universal TM” \(U \) recognizes \(A_{TM} \)

On input \(\langle M, w \rangle \):

1. Simulate running \(M \) on input \(w \)
2. If \(M \) accepts, *accept*. If \(M \) rejects, *reject*.

3/23/2020 CS332 - Theory of Computation
More on the Universal TM

"It is possible to invent a single machine which can be used to compute any computable sequence. If this machine U is supplied with a tape on the beginning of which is written the S.D ["standard description"] of some computing machine M, then U will compute the same sequence as M."

- Turing, “On Computable Numbers...” 1936

• Foreshadowed general-purpose programmable computers
• No need for specialized hardware: Virtual machines as software

Harvard architecture: Separate instruction and data pathways
von Neumann architecture: Programs can be treated as data
A more useful undecidable language

\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \} \]

Theorem: \(A_{TM} \) is undecidable

Proof: Assume for the sake of contradiction that TM \(H \) decides \(A_{TM} \):

\[H(\langle M, w \rangle) = \begin{cases}
\text{accept} & \text{if } M \text{ accepts } w \\
\text{reject} & \text{if } M \text{ does not accept } w
\end{cases} \]

Idea: Show that \(H \) can be used to decide the (undecidable) language \(SA_{TM} \) -- a contradiction.
A more useful undecidable language

$$A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts input } w\}$$

Suppose H decides A_{TM}

Consider the following TM D.

On input $\langle M \rangle$ where M is a TM:

1. Run H on input $\langle M, \langle M \rangle \rangle$
2. If H accepts, accept. If H rejects, reject.

Claim: D decides

$$SA_{TM} = \{\langle M \rangle \mid M \text{ is a TM that accepts on input } \langle M \rangle\}$$

...but this language is undecidable
Unrecognizable Languages

Theorem: A language L is decidable if and only if L and \overline{L} are both Turing-recognizable.

Proof:
Classes of Languages

- Recognizable
- Decidable
- Context free
- Regular
Reductions
A more useful undecidable language

\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \} \]

Theorem: \(A_{TM} \) is undecidable

Proof: Assume for the sake of contradiction that TM \(H \) decides \(A_{TM} \):

\[H(\langle M, w \rangle) = \begin{cases}
\text{accept} & \text{if } M \text{ accepts } w \\
\text{reject} & \text{if } M \text{ does not accept } w
\end{cases} \]

Idea: Show that \(H \) can be used to decide the (undecidable) language \(SA_{TM} \) -- a contradiction.

“A reduction from \(SA_{TM} \) to \(A_{TM} \)”
Scientists vs. Engineers

A computer scientist and an engineer are stranded on a desert island. They find two palm trees with one coconut on each. The engineer climbs a tree, picks a coconut and eats.

The computer scientist climbs the second tree, picks a coconut, climbs down, climbs up the first tree and places it there, declaring success.

“Now we’ve reduced the problem to one we’ve already solved.”
Reductions

A reduction from problem \(A \) to problem \(B \) is an algorithm for problem \(A \) which uses an algorithm for problem \(B \) as a subroutine.

If such a reduction exists, we say “\(A \) reduces to \(B \)”
Two uses of reductions

Positive uses: If \(A \) reduces to \(B \) and \(B \) is decidable, then \(A \) is also decidable

\[EQ_{DFA} = \{ \langle D_1, D_2 \rangle | D_1, D_2 are DFAs and L(D_1) = L(D_2) \} \]

Theorem: \(EQ_{DFA} \) is decidable

Proof: The following TM decides \(EQ_{DFA} \)

On input \(\langle D_1, D_2 \rangle \), where \(\langle D_1, D_2 \rangle \) are DFAs:

1. Construct a DFA \(D \) that recognizes the symmetric difference \(L(D_1) \triangle L(D_2) \)

2. Run the decider for \(E_{DFA} \) on \(\langle D \rangle \) and return its output
Two uses of reductions

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

$A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$
Suppose H decides A_{TM}

Consider the following TM D.
On input $\langle M \rangle$ where M is a TM:
1. Run H on input $\langle M, \langle M \rangle \rangle$
2. If H accepts, accept. If H rejects, reject.

Claim: D decides $SA_{TM} = \{\langle M \rangle \mid M \text{ is a TM that accepts on input } \langle M \rangle \}$
Two uses of reductions

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

Proof template:
1. Suppose to the contrary that B is decidable
2. Using B as a subroutine, construct an algorithm deciding A
3. But A is undecidable. Contradiction!
Halting Problem

\[\text{HALT}_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \} \]

Theorem: \(\text{HALT}_{\text{TM}} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(H \) for \(\text{HALT}_{\text{TM}} \). We construct a decider for \(A_{\text{TM}} \) as follows:

On input \(\langle M, w \rangle \):

1. Run \(H \) on input \(\langle M, w \rangle \)
2. If \(H \) rejects, reject
3. If \(H \) accepts, simulate \(M \) on \(w \)
4. If \(M \) accepts, accept. Otherwise, reject

This is a reduction from \(A_{\text{TM}} \) to \(\text{HALT}_{\text{TM}} \)
Empty language testing for TMs

\[E_{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

Theorem: \(E_{TM} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(E_{TM} \). We construct a decider for \(A_{TM} \) as follows:

On input \(\langle M, w \rangle \):

1. Run \(R \) on input ???

This is a reduction from \(A_{TM} \) to \(E_{TM} \).
Empty language testing for TMs

\[E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \]

Theorem: \(E_{\text{TM}} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(E_{\text{TM}} \). We construct a decider for \(A_{\text{TM}} \) as follows:

On input \(\langle M, w \rangle \):

1. Construct a TM \(M' \) as follows:
2. Run \(R \) on input \(\langle M' \rangle \)
3. If \(R \) accepts, accept. Otherwise, reject

This is a reduction from \(A_{\text{TM}} \) to \(E_{\text{TM}} \)
Context-free language testing for TMs

\[CFL_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is context – free} \} \]

Theorem: \(CFL_{TM} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(CFL_{TM} \). We construct a decider for \(A_{TM} \) as follows:

On input \(\langle M, w \rangle \):

1. Construct a TM \(M' \) as follows:
2. Run \(R \) on input \(\langle M' \rangle \)
3. If \(R \) accepts, accept. Otherwise, reject

This is a reduction from \(A_{TM} \) to \(CFL_{TM} \)
Context-free language testing for TMs

\[\text{CFL}_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is context – free} \} \]

Theorem: \(\text{CFL}_{\text{TM}} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(\text{CFL}_{\text{TM}} \). We construct a decider for \(A_{\text{TM}} \) as follows:

On input \(\langle M, w \rangle \):
1. Construct a TM \(M' \) as follows:
 \[M' = \text{“On input } x, \]
 1. If \(x \in \{0^n1^n2^n \mid n \geq 0\} \), accept
 2. Run TM \(M \) on input \(w \)
 3. If \(M \) accepts, accept.”
2. Run \(R \) on input \(\langle M' \rangle \)
3. If \(R \) accepts, accept. Otherwise, reject

This is a reduction from \(A_{\text{TM}} \) to \(\text{CFL}_{\text{TM}} \)