BU CS 332 – Theory of Computation

Lecture 15:

- Undecidable and Unrecognizable Languages
- Reductions

Reading: Sipser Ch 4.2, 5.1

Mark Bun

March 23, 2020

How can we compare sizes of infinite sets?

Definition: Two sets have the same size if there is a correspondence (bijection) between them

A set is countable if

- it is a finite set, or
- it has the same size as \mathbb{N} , the set of natural numbers

A general theorem about set sizes

Theorem: Let X be a set. Then the power set P(X) does **not** have the same size as X.

Proof: Assume for the sake of contradiction that there is a correspondence $f: X \rightarrow P(X)$

<u>Goal</u>: Use diagonalization to construct a set $S \in P(X)$ that cannot be the output f(x) for any $x \in X$

Undecidable Languages

Problems in language theory

A _{DFA}	A _{CFG}	А _{тм}
decidable	decidable	?
E _{DFA}	E _{CFG}	Е _{ТМ}
decidable	decidable	?
EQ _{DFA} decidable	EQ _{CFG} ?	ЕQ _{ТМ} ?

Undecidability

These natural computational questions about computational models are **undecidable**

I.e., computers cannot solve these problems no matter how much time they are given

An existential proof

Theorem: There exists an undecidable language over $\{0, 1\}$ **Proof**:

A simplifying assumption: Every string in $\{0, 1\}^*$ is the encoding $\langle M \rangle$ of some Turing machine M

Set of all Turing machines: $X = \{0, 1\}^*$ Set of all languages over $\{0, 1\}$: all subsets of $\{0, 1\}^*$ = P(X)

There are more languages than there are TM deciders!

An existential proof

Theorem: There exists an unrecognizable language over {0, 1} Proof:

A simplifying assumption: Every string in $\{0, 1\}^*$ is the encoding $\langle M \rangle$ of some Turing machine M

Set of all Turing machines: $X = \{0, 1\}^*$ Set of all languages over $\{0, 1\}$: all subsets of $\{0, 1\}^*$ = P(X)

There are more languages than there are TM recognizers!

An explicit undecidable language

An explicit undecidable language

TM M	$M(\langle M_1 \rangle)?$	$M(\langle M_2 \rangle)?$	$M(\langle M_3 \rangle)?$	$M(\langle M_4 \rangle)?$		$D(\langle D \rangle)?$
<i>M</i> ₁	Y	Ν	Y	Y		
<i>M</i> ₂	N	Ν	Y	Y		
<i>M</i> ₃	Y	Y	Y	Ν		
<i>M</i> ₄	N	N	Y	Ν		
:					***	
D						

$L = \{ \langle M \rangle \mid M \text{ is a TM that does not accept on input } \langle M \rangle \}$ Suppose *D* decides *L*

An explicit undecidable language

Theorem: $L = \{\langle M \rangle \mid M \text{ is a TM that does$ **not**accept oninput $\langle M \rangle$ is undecidable

Proof: Suppose for contradiction, that D decides L

Corollary: $SA_{TM} = L = \{\langle M \rangle \mid M \text{ is a TM that accepts on } \}$ $input_{M} \in M$ is undecidable 11

A more useful undecidable language

 $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$ Theorem: A_{TM} is undecidable

But first: A_{TM} is Turing-recognizable The following "universal TM" U recognizes A_{TM}

On input $\langle M, w \rangle$:

- 1. Simulate running *M* on input *w*
- 2. If *M* accepts, accept. If *M* rejects, reject.

More on the Universal TM

"It is possible to invent a single machine which can be used to compute any computable sequence. If this machine **U** is supplied with a tape on the beginning of which is written the S.D ["standard description"] of some computing machine **M**, then **U** will compute the same sequence as **M**."

- Turing, "On Computable Numbers..." 1936

- Foreshadowed general-purpose programmable computers
- No need for specialized hardware: Virtual machines as software

Harvard architecture: von Ne Separate instruction and data pathways Programs

von Neumann architecture: Programs can be treated as data

A more useful undecidable language

 $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$ Theorem: A_{TM} is undecidable

Proof: Assume for the sake of contradiction that TM H decides A_{TM} :

$$H(\langle M, w \rangle) = \begin{cases} \text{accept} & \text{if } M \text{ accepts } w \\ \text{reject} & \text{if } M \text{ does not accept } w \end{cases}$$

Idea: Show that H can be used to decide the (undecidable) language SA_{TM} -- a contradiction.

A more useful undecidable language

 $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$ Suppose H decides A_{TM}

Consider the following TM D. On input $\langle M \rangle$ where M is a TM:

- 1. Run *H* on input $\langle M, \langle M \rangle \rangle$
- 2. If *H* accepts, accept. If *H* rejects, reject.

Claim: D decides $SA_{TM} = \{\langle M \rangle \mid M \text{ is a TM that accepts on input } \langle M \rangle\}$...but this language is undecidable

Unrecognizable Languages

Theorem: A language L is decidable if and only if L and \overline{L} are both Turing-recognizable.

Proof:

Classes of Languages

Reductions

A more useful undecidable language

 $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$ Theorem: A_{TM} is undecidable

Proof: Assume for the sake of contradiction that TM H decides A_{TM} :

$$H(\langle M, w \rangle) = \begin{cases} \text{accept} & \text{if } M \text{ accepts } w \\ \text{reject} & \text{if } M \text{ does not accept } w \end{cases}$$

Idea: Show that H can be used to decide the (undecidable) language SA_{TM} -- a contradiction.

"A reduction from SA_{TM} to A_{TM} "

Scientists vs. Engineers

A computer scientist and an engineer are stranded on a desert island. They find two palm trees with one coconut on each. The engineer climbs a tree, picks a coconut and eats.

The computer scientist climbs the second tree, picks a coconut, climbs down, climbs up the first tree and places it there, declaring success.

"Now we've reduced the problem to one we've already solved."

A reduction from problem A to problem B is an algorithm for problem A which uses an algorithm for problem B as a subroutine

If such a reduction exists, we say "A reduces to B"

Two uses of reductions

Positive uses: If A reduces to B and B is decidable, then A is also decidable

 $EQ_{\text{DFA}} = \{ \langle D_1, D_2 \rangle | D_1, D_2 \text{ are DFAs and } L(D_1) = L(D_2) \}$ Theorem: EQ_{DFA} is decidable Proof: The following TM decides EQ_{DFA}

On input $\langle D_1, D_2 \rangle$, where $\langle D_1, D_2 \rangle$ are DFAs:

- 1. Construct a DFA D that recognizes the symmetric difference $L(D_1) \bigtriangleup L(D_2)$
- 2. Run the decider for E_{DFA} on $\langle D \rangle$ and return its output

Two uses of reductions

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

 $A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts input } w\}$ Suppose *H* decides A_{TM}

Consider the following TM D. On input $\langle M \rangle$ where M is a TM:

- 1. Run *H* on input $\langle M, \langle M \rangle \rangle$
- 2. If *H* accepts, accept. If *H* rejects, reject.

Claim: *D* decides $SA_{TM} = \{\langle M \rangle \mid M \text{ is a TM that accepts on input } \langle M \rangle \}$

Two uses of reductions

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

Proof template:

- 1. Suppose to the contrary that *B* is decidable
- 2. Using B as a subroutine, construct an algorithm deciding A
- 3. But *A* is undecidable. Contradiction!

Halting Problem

 $HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM that halts on input } w \}$

Theorem: *HALT*_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider H for $HALT_{TM}$. We construct a decider for A_{TM} as follows:

On input $\langle M, w \rangle$:

- 1. Run *H* on input $\langle M, w \rangle$
- 2. If *H* rejects, reject
- 3. If *H* accepts, simulate *M* on *w*
- 4. If *M* accepts, accept. Otherwise, reject

This is a reduction from $A_{\rm TM}$ to $HALT_{\rm TM}$

Empty language testing for TMs

$$E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$$

Theorem: *E*_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for E_{TM} . We construct a decider for A_{TM} as follows:

- On input $\langle M, w \rangle$:
- 1. Run *R* on input ???

This is a reduction from $A_{\rm TM}$ to $E_{\rm TM}$

Empty language testing for TMs

$$E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$$

Theorem: *E*_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for E_{TM} . We construct a decider for A_{TM} as follows:

On input $\langle M, w \rangle$:

1. Construct a TM *M*' as follows:

2. Run *R* on input $\langle M' \rangle$

3. If *R* , accept. Otherwise, reject

This is a reduction from $A_{\rm TM}$ to $E_{\rm TM}$

Context-free language testing for TMs

 $CFL_{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) \text{ is context} - \text{free} \}$ **Theorem:** CFL_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for CFL_{TM} . We construct a decider for A_{TM} as follows: On input $\langle M, w \rangle$:

1. Construct a TM *M*' as follows:

2. Run *R* on input $\langle M' \rangle$

3. If *R* accepts, accept. Otherwise, reject

This is a reduction from $A_{\rm TM}$ to $CFL_{\rm TM}$

Context-free language testing for TMs

 $CFL_{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) \text{ is context} - \text{free} \}$ **Theorem:** CFL_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for CFL_{TM} . We construct a decider for A_{TM} as follows: On input $\langle M, w \rangle$:

1. Construct a TM *M*' as follows:

M' = "On input x, $1. \text{ If } x \in \{0^n 1^n 2^n \mid n \ge 0\}, \text{ accept}$ 2. Run TM M on input w 3. If M accepts, accept." $2. \text{ Run } R \text{ on input } \langle M' \rangle$ 3. If R accepts, accept. Otherwise, reject

This is a reduction from A_{TM} to CFL_{TM}