
BU CS 332 – Theory of Computation

Lecture 18:

• Time Complexity

• Complexity Class P

Reading:

Sipser Ch 7.1-7.2

Mark Bun

April 6, 2020

Where we are in CS 332

4/6/2020 CS332 - Theory of Computation 2

Automata & Formal Languages Computability Complexity

Previous unit: Computability theory
What kinds of problems can / can’t computers solve?

Final unit: Complexity theory
What kinds of problems can / can’t computers solve under
constraints on their computational resources?

First topic: Time complexity

Today: Answering the basic questions

1. How do we measure complexity? (as in CS 330)

2. Asymptotic notation (as in CS 330)

3. How robust is the TM model when we care about
measuring complexity?

4. How do we mathematically capture our intuitive
notion of “efficient algorithms”?

4/6/2020 CS332 - Theory of Computation 3

Running time analysis

Time complexity of a TM (algorithm) = maximum number of
steps it takes on a worst-case input

Formally: Let 𝑓 ∶ ℕ → ℕ. A TM 𝑀 runs in time 𝑓(𝑛) if on
every input 𝑤 ∈ Σ∗, 𝑀 halts on 𝑤 within at most 𝑓(𝑛) steps

- Focus on worst-case running time: Upper bound of 𝑓 𝑛

must hold for all inputs of length 𝑛

- Exact running time 𝑓 𝑛 does not translate well between

computational models / real computers. Instead focus on

asymptotic complexity.

4/6/2020 CS332 - Theory of Computation 4

Example

How much time does it take for a basic single-tape TM to
decide 𝐴 = 0𝑚1𝑚 𝑚 ≥ 0}?

Let’s analyze one particular TM 𝑀:

𝑀 = “On input 𝑤:

1. Scan input and reject if not of the form 0∗1∗

2. While input contains both 0’s and 1’s:

Cross off one 0 and one 1

3. Accept if no 0’s and no 1’s left. Otherwise, reject.”

4/6/2020 CS332 - Theory of Computation 5

Review of asymptotic notation

𝑂-notation (upper bounds)

𝑓 𝑛 = 𝑂(𝑔 𝑛) means:

There exist constants 𝑐 > 0, 𝑛0 > 0 such that

𝑓 𝑛 ≤ 𝑐𝑔 𝑛 for every 𝑛 ≥ 𝑛0

Example: 2𝑛2 = 𝑂(𝑛3) (𝑐 = 2, 𝑛0 = 0)

4/6/2020 CS332 - Theory of Computation 6

Caution: = does not mean “equals”

Not reflexive:

𝑓 𝑛 = 𝑂(𝑔 𝑛) does not mean 𝑔 𝑛 = 𝑂(𝑓 𝑛)

Example: 𝑓 𝑛 = 2𝑛2, 𝑔 𝑛 = 𝑛3

Alternative (better) notation: 𝑓 𝑛 ∈ 𝑂(𝑔 𝑛)

4/6/2020 CS332 - Theory of Computation 7

Examples

4/6/2020 CS332 - Theory of Computation 8

• 106 𝑛3+ 2𝑛2 − 𝑛 + 10 =

• 𝑛 + log 𝑛 =

• 𝑛 (log 𝑛 + 𝑛) =

• 𝑛 =

Review of asymptotic notation

Ω-notation (lower bounds)

𝑓 𝑛 = Ω(𝑔 𝑛) means:

There exist constants 𝑐 > 0, 𝑛0 > 0 such that

𝑓 𝑛 ≥ 𝑐𝑔 𝑛 for every 𝑛 ≥ 𝑛0

Example: 𝑛 = Ω(log 𝑛) (𝑐 = 1, 𝑛0 = 16)

4/6/2020 CS332 - Theory of Computation 9

When should we use 𝑂 vs. Ω?

Upper bounds: Use 𝑂

“The merge-sort algorithm uses at most 𝑂(𝑛 log 𝑛)

comparisons in the worst case”

Lower bounds: Use Ω

“Every comparison-based sorting algorithm requires at

least Ω(𝑛 log 𝑛) comparisons in the worst case”

4/6/2020 CS332 - Theory of Computation 10

Review of asymptotic notation

Θ-notation (tight bounds)

𝑓 𝑛 = Θ(𝑔 𝑛) means:

𝑓 𝑛 = 𝑂(𝑔 𝑛) AND 𝑓 𝑛 = Ω(𝑔 𝑛)

Example:
1

2
𝑛2 − 1000𝑛 = Θ(𝑛2)

Generally, polynomials are easy:

𝑎𝑑 𝑛
𝑑 + 𝑎𝑑−1𝑛

𝑑−1 +  + 𝑎1𝑛 + 𝑎0 = (𝑛𝑑)

4/6/2020 CS332 - Theory of Computation 11

Little-oh and little-omega

4/6/2020 CS332 - Theory of Computation 12

𝑂-notation and -notation are like  and ;
𝑜-notation and -notation are like < and >

Example: 2𝑛2 = 𝑂(𝑛3) (𝑛0 = 2/𝑐)

𝑓 𝑛 = 𝑜(𝑔 𝑛) means:
For every constant 𝑐 > 0, there exists 𝑛0 > 0 such that

𝑓 𝑛 ≤ 𝑐𝑔 𝑛 for every 𝑛 ≥ 𝑛0

A handy-dandy chart

4/6/2020 CS332 - Theory of Computation 13

Notation … means … Think… Example lim
n←∞

𝑓(𝑛)

𝑔 𝑛

f(n)=O(g(n)) ∃ c>0, n0>0, ∀ n > n0 :

f(n) < cg(n)

Upper bound 100n2

= O(n3)

If it exists, it

is < ∞

f(n)=(g(n)) ∃c>0, n0>0, ∀ n > n0 :

cg(n) < f(n)

Lower

bound
2n

= (n100)

If it exists, it

is > 0

f(n)=(g(n)) both of the above:

f=(g) and f = O(g)

Tight bound log(n!)

= (n log n)

If it exists, it

is > 0 and <

∞

f(n)=o(g(n)) ∀ c>0, ∃ n0>0, ∀ n > n0 :

f(n) < cg(n)

Strict upper

bound

n2 = o(2n) Limit exists,

=0

f(n)=(g(n)) ∀ c>0, ∃n0>0, ∀ n > n0 :

cg(n) < f(n)

Strict lower

bound

n2

= (log n)

Limit exists,

=∞

Asymptotic notation within expressions

Asymptotic notation within an expression is shorthand for
an unspecified function satisfying the statement

Examples:

• 𝑛𝑂(1)

• 𝑛2 + Ω 𝑛

• 1 + 𝑜 1 𝑛

4/6/2020 CS332 - Theory of Computation 14

FAABs: Frequently asked asymptotic bounds

4/6/2020 CS332 - Theory of Computation 15

• Polynomials. 𝑎0 + 𝑎1𝑛 + … + 𝑎𝑑𝑛
𝑑 is (𝑛𝑑) if 𝑎𝑑 > 0

• Logarithms. log 𝑎𝑛 = (log 𝑏𝑛) for all constants 𝑎, 𝑏 > 0

For every 𝑐 > 0, log 𝑛 = 𝑜(𝑛𝑐)

• Exponentials. For all 𝑏 > 1 and all 𝑑 > 0, 𝑛𝑑 = 𝑜(𝑏𝑛)

• Factorial. 𝑛! = 𝑛 𝑛 − 1 ⋯1

By Stirling’s formula,

Time Complexity

4/6/2020 CS332 - Theory of Computation 16

Time complexity classes

Let 𝑓 ∶ ℕ → ℕ

TIME(𝑓(𝑛)) is a class (i.e., set) of languages:

A language 𝐴 ∈ TIME(𝑓(𝑛)) if there exists a basic single-
tape (deterministic) TM 𝑀 that

1) Decides 𝐴, and

2) Runs in time 𝑂(𝑓(𝑛))

4/6/2020 CS332 - Theory of Computation 17

Example

𝐴 = 0𝑚1𝑚 𝑚 ≥ 0}

𝑀 = “On input 𝑤:

1. Scan input and reject if not of the form 0∗1∗

2. While input contains both 0’s and 1’s:

Cross off one 0 and one 1

3. Accept if no 0’s and no 1’s left. Otherwise, reject.”

• 𝑀 runs in time 𝑂 𝑛2

• Is there a faster algorithm?

4/6/2020 CS332 - Theory of Computation 18

Example

𝐴 = 0𝑚1𝑚 𝑚 ≥ 0}

𝑀′ = “On input 𝑤:

1. Scan input and reject if not of the form 0∗1∗

2. While input contains both 0’s and 1’s:

• Reject if the total number of 0’s and 1’s remaining is odd

• Cross off every other 0 and every other 1

3. Accept if no 0’s and no 1’s left. Otherwise, reject.”

• Running time of 𝑀′:

• Is there a faster algorithm?

4/6/2020 CS332 - Theory of Computation 19

Example

Running time of 𝑀′: 𝑂 𝑛 log 𝑛

Theorem (Sipser, Problem 7.49): If 𝐿 can be decided in
𝑜 𝑛 log 𝑛 time on a 1-tape TM, then 𝐿 is regular

4/6/2020 CS332 - Theory of Computation 20

Does it matter that we’re using the 1-tape
model for this result?
It matters: 2-tape TMs can decide 𝐴 faster

𝑀′′ = “On input 𝑤:

1. Scan input and reject if not of the form 0∗1∗

2. Copy 0’s to tape 2

3. Scan tape 1. For each 1 read, cross of a 0 on tape 2

4. If 0’s on tape 2 finish at same time as 1’s on tape 1, accept.
Otherwise, reject.”

Analysis: 𝐴 is decided in time 𝑂(𝑛) on a 2-tape TM

Moral of the story (part 1): Unlike decidability, time
complexity depends on the TM model

4/6/2020 CS332 - Theory of Computation 21

How much does the model matter?

Theorem: Let 𝑡 𝑛 ≥ 𝑛 be a function. Every multi-tape
TM running in time 𝑡 𝑛 has an equivalent single-tape TM
running in time 𝑂(𝑡 𝑛 2)

Proof idea:

We already saw how to simulate a multi-tape TM with a
single-tape TM

Need a runtime analysis of this construction

Moral of the story (part 2): Time complexity doesn’t
depend too much on the TM model (as long as it’s
deterministic, sequential)

4/6/2020 CS332 - Theory of Computation 22

Simulating Multiple Tapes

Implementation-Level Description

On input 𝑤 = 𝑤1𝑤2 …𝑤𝑛
1. Format tape into # ሶ𝑤1𝑤2…𝑤𝑛# ሶ⊔ # ሶ⊔ #…#

2. For each move of 𝑀:

Scan left-to-right, finding current symbols

Scan left-to-right, writing new symbols,

Scan left-to-right, moving each tape head

If a tape head goes off the right end, insert blank

If a tape head goes off left end, move back right

4/6/2020 CS332 - Theory of Computation 23

How much does the model matter?

Theorem: Let 𝑡 𝑛 ≥ 𝑛 be a function. Every multi-tape
TM running in time 𝑡 𝑛 has an equivalent single-tape TM
running in time 𝑂(𝑡 𝑛 2)

Proof: Time analysis of simulation

• Time to initialize (i.e., format tape): 𝑂 𝑛 + 𝑘

• Time to simulate one step of multi-tape TM: 𝑂 𝑡 𝑛

• Number of steps to simulate: 𝑡 𝑛

=> Total time:

4/6/2020 CS332 - Theory of Computation 24

Extended Church-Turing Thesis

Every “reasonable” model of computation can be
simulated by a basic, single-tape TM with only a
polynomial slowdown.

E.g., doubly infinite TMs, multi-tape TMs, RAM TMs

Does not include nondeterministic TMs (not reasonable)

Possible counterexamples? Randomized computation,
parallel computation, DNA computing, quantum
computation

4/6/2020 CS332 - Theory of Computation 25

Complexity Class P

4/6/2020 CS332 - Theory of Computation 26

Complexity class P

Definition: P is the class of languages decidable in
polynomial time on a basic single-tape (deterministic) TM

P = 𝑘=1ڂ
∞ TIME(𝑛𝑘)

• Class doesn’t change if we substitute in another
reasonable deterministic model (Extended Church-Turing)

• Cobham-Edmonds Thesis: Captures class of problems that
are feasible to solve on computers

4/6/2020 CS332 - Theory of Computation 27

A note about encodings

We’ll still use the notation for “any reasonable”
encoding of the input to a TM…but now we have to be
more careful about what we mean by “reasonable”

How long is the encoding of an 𝑛-vertex graph…

… as an adjacency matrix?

… as an adjacency list?

How long is the encoding of a natural number 𝑛

… in binary?

… in decimal?

… in unary?

4/6/2020 CS332 - Theory of Computation 28

Describing and analyzing polynomial-time
algorithms

• Due to Extended Church-Turing Thesis, we can still use
high-level descriptions on multi-tape machines

• Polynomial-time is robust under composition: poly(𝑛)
executions of poly(𝑛)-time subroutines run on poly(𝑛)-
size inputs gives an algorithm running in poly(𝑛) time.

=> Can freely use algorithms we’ve seen before as
subroutines if we’ve analyzed their runtime

• Need to be careful about size of inputs! (Assume inputs
represented in binary unless otherwise stated.)

4/6/2020 CS332 - Theory of Computation 29

Examples of languages in P

• 𝑃𝐴𝑇𝐻 =
𝐺, 𝑠, 𝑡 𝐺 is a directed graph with a directed path from 𝑠 to 𝑡}

• 𝐴DFA = 𝐷,𝑤 𝐷 is a DFA that accepts input 𝑤}

• 𝑅𝐸𝐿𝑃𝑅𝐼𝑀𝐸 = 𝑥, 𝑦 𝑥 and 𝑦 are relatively prime}

• 𝑃𝑅𝐼𝑀𝐸𝑆 = 𝑥 𝑥 is prime}

• Every context-free language (section tomorrow)

4/6/2020 CS332 - Theory of Computation 30

2006 Gödel Prize citation

The 2006 Gödel Prize for outstanding articles
in theoretical computer science is awarded to
Manindra Agrawal, Neeraj Kayal, and Nitin
Saxena for their paper "PRIMES is in P."

In August 2002 one of the most ancient
computational problems was finally solved….

𝑀 = “On input 𝑤:

1. Scan input and reject if not of the form 0∗1∗

2. While input contains both 0’s and 1’s:

Cross off one 0 and one 1

3. Accept if no 0’s and no 1’s left. Otherwise, reject.”

4/6/2020 CS332 - Theory of Computation 31

