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NP-completeness
Definition: A language 𝐵𝐵 is NP-complete if

1) 𝐵𝐵 ∈ NP, and
2) Every language 𝐴𝐴 ∈ NP is poly-time reducible to 
𝐵𝐵, i.e., 𝐴𝐴 ≤p 𝐵𝐵 (“𝐵𝐵 is NP-hard”)

Theorem: If 𝐶𝐶 ∈ NP and 𝐵𝐵 ≤p 𝐶𝐶 for some NP-complete 
language 𝐵𝐵, then 𝐶𝐶 is also NP-complete
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3𝑆𝑆𝐴𝐴𝑆𝑆 (3-CNF Satisfiability)

Definition(s): 
• A literal either a variable of its negation 𝑥𝑥5 ,  𝑥𝑥7
• A clause is a disjunction (OR) of literals Ex. 𝑥𝑥5 ∨ 𝑥𝑥7 ∨ 𝑥𝑥2
• A 3-CNF is a conjunction (AND) of clauses where each 

clause contains exactly 3 literals
Ex. 𝐶𝐶1 ∧ 𝐶𝐶2 ∧ … ∧ 𝐶𝐶𝑚𝑚 =

𝑥𝑥5 ∨ 𝑥𝑥7 ∨ 𝑥𝑥2 ∧ 𝑥𝑥3 ∨ 𝑥𝑥4 ∨ 𝑥𝑥1 ∧ ⋯∧ 𝑥𝑥1 ∨ 𝑥𝑥1 ∨ 𝑥𝑥1

3𝑆𝑆𝐴𝐴𝑆𝑆 = 𝜑𝜑 𝜑𝜑 is a satisfiable 3 − CNF
Cook-Levin Theorem: 3𝑆𝑆𝐴𝐴𝑆𝑆 is NP-complete
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Some general reduction strategies
• Reduction by simple equivalence

Ex. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆 − 𝑆𝑆𝐼𝐼𝑆𝑆 ≤p 𝑉𝑉𝐼𝐼𝑉𝑉𝑆𝑆𝐼𝐼𝑉𝑉 − 𝐶𝐶𝑂𝑂𝑉𝑉𝐼𝐼𝑉𝑉
and 𝑉𝑉𝐼𝐼𝑉𝑉𝑆𝑆𝐼𝐼𝑉𝑉 − 𝐶𝐶𝑂𝑂𝑉𝑉𝐼𝐼𝑉𝑉 ≤p 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆 − 𝑆𝑆𝐼𝐼𝑆𝑆

• Reduction from special case to general case
Ex. 𝑉𝑉𝐼𝐼𝑉𝑉𝑆𝑆𝐼𝐼𝑉𝑉 − 𝐶𝐶𝑂𝑂𝑉𝑉𝐼𝐼𝑉𝑉 ≤p 𝑆𝑆𝐼𝐼𝑆𝑆 − 𝐶𝐶𝑂𝑂𝑉𝑉𝐼𝐼𝑉𝑉

• Gadget reductions
Ex. 3𝑆𝑆𝐴𝐴𝑆𝑆 ≤p 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆 − 𝑆𝑆𝐼𝐼𝑆𝑆
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Independent Set

4/22/2020 CS332 - Theory of Computation 5

An independent set in an undirected graph 𝐺𝐺 is a set of vertices 
that includes at most one endpoint of every edge.

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆 − 𝑆𝑆𝐼𝐼𝑆𝑆
= 𝐺𝐺, 𝑘𝑘 𝐺𝐺 is an undirected graph containing an independent set with ≥ 𝑘𝑘 vertices}

• Is there an independent set of size ≥ 6?  
• Yes.

• Is there an independent set of size ≥ 7?  
• No.

independent set



Independent Set is NP-complete
1) 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆 − 𝑆𝑆𝐼𝐼𝑆𝑆 ∈ NP
2) Reduce 3𝑆𝑆𝐴𝐴𝑆𝑆 ≤p 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆 − 𝑆𝑆𝐼𝐼𝑆𝑆

Proof.  “On input 𝜑𝜑 , where 𝜑𝜑 is a 3CNF formula,
1. Construct graph 𝐺𝐺 from 𝜑𝜑

• 𝐺𝐺 contains 3 vertices for each clause, one for each literal.
• Connect 3 literals in a clause in a triangle.
• Connect literal to each of its negations.

2. Output 𝐺𝐺,𝑘𝑘 , where 𝑘𝑘 is the number of clauses in 𝜑𝜑.”
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Example of the reduction
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𝜑𝜑 = 𝑥𝑥1 ∨ 𝑥𝑥2 ∨ 𝑥𝑥3 ∧ 𝑥𝑥1 ∨ 𝑥𝑥2 ∨ 𝑥𝑥3 ∧ 𝑥𝑥1 ∨ 𝑥𝑥2 ∨ 𝑥𝑥4



Proof of correctness for reduction
Let 𝑘𝑘 = # clauses and 𝑙𝑙 = # literals in 𝜑𝜑
Claim: 𝜑𝜑 is satisfiable iff 𝐺𝐺 has an ind. set of size 𝑘𝑘

⟹ Given a satisfying assignment, select one literal from each 
triangle. This is an ind. set of size 𝑘𝑘

⟸ Let 𝑆𝑆 be an ind. set of size 𝑘𝑘
• 𝑆𝑆 must contain exactly one vertex in each triangle
• Set these literals to true, and set all other variables in an arbitrary 

way
• Truth assignment is consistent and all clauses satisfied

Runtime: 𝑂𝑂(𝑘𝑘 + 𝑙𝑙2) which is polynomial in input size
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Space Complexity
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Complexity measures we’ve studied so far
• Deterministic time TIME
• Nondeterministic time NTIME
• Classes P, NP

Many other resources of interest:
Space (memory), randomness, parallel runtime / 
#processors, quantum entanglement, interaction, 
communication, …
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Space analysis
Space complexity of a TM (algorithm) = maximum number 
of tape cell it uses on a worst-case input

Formally: Let 𝑓𝑓 ∶ ℕ → ℕ. A TM 𝑀𝑀 runs in space 𝑓𝑓(𝑛𝑛) if on 
every input 𝑤𝑤 ∈ Σ∗, 𝑀𝑀 halts on 𝑤𝑤 using at most 𝑓𝑓 𝑛𝑛 cells

For nondeterministic machines:   Let 𝑓𝑓 ∶ ℕ → ℕ. An NTM
𝐼𝐼 runs in space 𝑓𝑓(𝑛𝑛) if on every input 𝑤𝑤 ∈ Σ∗, 𝐼𝐼 halts on 𝑤𝑤
using at most 𝑓𝑓 𝑛𝑛 cells on every computational branch
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Space complexity classes

Let 𝑓𝑓 ∶ ℕ → ℕ

A language 𝐴𝐴 ∈ SPACE(𝑓𝑓(𝑛𝑛)) if there exists a basic single-
tape (deterministic) TM 𝑀𝑀 that 
1) Decides 𝐴𝐴, and
2) Runs in space 𝑂𝑂(𝑓𝑓(𝑛𝑛))

A language 𝐴𝐴 ∈ NSPACE(𝑓𝑓(𝑛𝑛)) if there exists a single-
tape nondeterministic TM 𝐼𝐼 that 
1) Decides 𝐴𝐴, and
2) Runs in space 𝑂𝑂(𝑓𝑓(𝑛𝑛))
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Example: Space complexity of SAT
Theorem: 𝑆𝑆𝐴𝐴𝑆𝑆 ∈ SPACE(𝑛𝑛)
Proof: The following deterministic TM decides 𝑆𝑆𝐴𝐴𝑆𝑆 using 
linear space

On input 𝜑𝜑 where 𝜑𝜑 is a Boolean formula:
1. For each truth assignment to the variables 
𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 of 𝜑𝜑:

2. Evaluate 𝜑𝜑 on 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚
3. If any evaluation = 1, accept. Else, reject.
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Example: NFA analysis
Theorem: Let 𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐴𝐴 𝐴𝐴 is an NFA with 𝐴𝐴 𝐴𝐴 = Σ∗}
Then 𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁 ∈ NSPACE(𝑛𝑛).
Proof: The following NTM decides 𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁 in linear space

On input 𝐴𝐴 where 𝐴𝐴 is an NTM:
1. Place a marker on the start state of 𝐴𝐴.
2. Repeat 2𝑞𝑞 times where 𝑞𝑞 is the # of states of 𝐴𝐴:
3. Nondeterministically select 𝑎𝑎 ∈ Σ.
4. Adjust the markers to simulate all ways for 𝐴𝐴 to read 𝑎𝑎.
5. Accept if at any point none of the markers are on an accept 

state. Else, reject.
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Example
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Space vs. Time
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Space vs. Time
𝑆𝑆𝐼𝐼𝑀𝑀𝐼𝐼 𝑓𝑓 𝑛𝑛 ⊆ 𝐼𝐼𝑆𝑆𝐼𝐼𝑀𝑀𝐼𝐼 𝑓𝑓 𝑛𝑛 ⊆ 𝑆𝑆𝐼𝐼𝐴𝐴𝐶𝐶𝐼𝐼 𝑓𝑓 𝑛𝑛

How about the opposite direction? Can low-space 
algorithms be simulated by low-time algorithms?
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Reminder: Configurations
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A configuration is a string 𝑢𝑢𝑞𝑞𝑢𝑢 where 𝑞𝑞 ∈ 𝑄𝑄 and 𝑢𝑢, 𝑢𝑢 ∈ Γ∗

• Tape contents = 𝑢𝑢𝑢𝑢 (followed by blanks ⊔)
• Current state = 𝑞𝑞
• Tape head on first symbol of 𝑢𝑢

Example:     101𝑞𝑞50111

Start configuration: 𝑞𝑞0𝑤𝑤
Accepting configuration: 𝑞𝑞 = 𝑞𝑞accept
Rejecting configuration: 𝑞𝑞 = 𝑞𝑞reject



Reminder: Configurations
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Consider a TM with 
• 𝑘𝑘 states 
• tape alphabet {0, 1}
• space 𝑓𝑓(𝑛𝑛)
How many configurations are possible when this TM is run on 
an input 𝑤𝑤 ∈ 0,1 𝑛𝑛?

Observation: If a TM enters the same configuration twice 
when run on input 𝑤𝑤, it loops forever
Corollary: A TM running in space 𝑓𝑓(𝑛𝑛) also runs in time 
2𝑂𝑂 𝑓𝑓 𝑛𝑛



Savitch’s Theorem
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Savitch’s Theorem: Deterministic vs. 
Nondeterministic Space
Theorem: Let 𝑓𝑓 be a function with 𝑓𝑓 𝑛𝑛 ≥ 𝑛𝑛. Then 
𝐼𝐼𝑆𝑆𝐼𝐼𝐴𝐴𝐶𝐶𝐼𝐼 𝑓𝑓 𝑛𝑛 ⊆ 𝑆𝑆𝐼𝐼𝐴𝐴𝐶𝐶𝐼𝐼 𝑓𝑓 𝑛𝑛 2 .

Proof idea:
• Let 𝐼𝐼 be an NTM deciding 𝑓𝑓 in space 𝑓𝑓(𝑛𝑛)

• We construct a TM 𝑀𝑀 deciding 𝑓𝑓 in space 𝑂𝑂 𝑓𝑓 𝑛𝑛 2

• Actually solve a more general problem:
• Given configurations 𝑐𝑐1, 𝑐𝑐2 of 𝐼𝐼 and natural number 𝑡𝑡,                              

decide whether 𝐼𝐼 can go from 𝑐𝑐1 to 𝑐𝑐2 in ≤ 𝑡𝑡 steps                          
on some nondeterministic path.

• Procedure CANYIELD(𝑐𝑐1, 𝑐𝑐2, 𝑡𝑡)
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Savitch’s Theorem
Theorem: Let 𝑓𝑓 be a function with 𝑓𝑓 𝑛𝑛 ≥ 𝑛𝑛. Then 
𝐼𝐼𝑆𝑆𝐼𝐼𝐴𝐴𝐶𝐶𝐼𝐼 𝑓𝑓 𝑛𝑛 ⊆ 𝑆𝑆𝐼𝐼𝐴𝐴𝐶𝐶𝐼𝐼 𝑓𝑓 𝑛𝑛 2 .

Proof idea:
• Let 𝐼𝐼 be an NTM deciding 𝑓𝑓 in space 𝑓𝑓(𝑛𝑛)
𝑀𝑀 = “On input 𝑤𝑤:

1. Output the result of CANYIELD(𝑐𝑐1, 𝑐𝑐2, 2𝑑𝑑𝑓𝑓 𝑛𝑛 )”

Where CANYIELD(𝑐𝑐1, 𝑐𝑐2, 𝑡𝑡) decides whether 𝐼𝐼 can go from 
configuration 𝑐𝑐1 to 𝑐𝑐2 in ≤ 𝑡𝑡 steps on some nondeterministic 
path
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Savitch’s Theorem
CANYIELD(𝑐𝑐1, 𝑐𝑐2, 𝑡𝑡) decides whether 𝐼𝐼 can go from configuration 
𝑐𝑐1 to 𝑐𝑐2 in ≤ 𝑡𝑡 steps on some nondeterministic path:

CANYIELD(𝑐𝑐1, 𝑐𝑐2, 𝑡𝑡) = 
1. If 𝑡𝑡 = 1, accept if 𝑐𝑐1 = 𝑐𝑐2 or 𝑐𝑐1 yields 𝑐𝑐2 in one transition. 

Else, reject.
2. If 𝑡𝑡 > 1, then for each config 𝑐𝑐𝑚𝑚𝑚𝑚𝑑𝑑 of 𝐼𝐼 with ≤ 𝑓𝑓 𝑛𝑛 cells: 
3. Run CANYIELD(〈𝑐𝑐1, 𝑐𝑐𝑚𝑚𝑚𝑚𝑑𝑑 , 𝑡𝑡/2〉).
4. Run CANYIELD(〈𝑐𝑐𝑚𝑚𝑚𝑚𝑑𝑑 , 𝑐𝑐2, 𝑡𝑡/2〉).
5. If both runs accept, accept.
6. Reject.
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Complexity class PSPACE

Definition: PSPACE is the class of languages decidable in 
polynomial space on a basic single-tape (deterministic) TM

PSPACE = ⋃𝑘𝑘=1
∞ SPACE(𝑛𝑛𝑘𝑘)

Definition: NPSPACE is the class of languages decidable in 
polynomial space on a single-tape (nondeterministic) TM

NPSPACE = ⋃𝑘𝑘=1
∞ NSPACE(𝑛𝑛𝑘𝑘)
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Relationships between complexity classes
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1. P ⊆ NP ⊆ PSPACE ⊆ EXP
since 𝑆𝑆𝐼𝐼𝐴𝐴𝐶𝐶𝐼𝐼 𝑓𝑓 𝑛𝑛 ⊆ 𝑆𝑆𝐼𝐼𝑀𝑀𝐼𝐼(2𝑂𝑂(𝑓𝑓 𝑛𝑛 ))

2. P ≠ EXP (Monday)
Which containments

in (1) are proper?
Unknown!

PSPACE=NPSPACE

EXP

P
NP
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