BU CS 332 – Theory of Computation

Lecture 22:

- NP-Completeness Example
- Space Complexity
- Savitch's Theorem

Reading: Sipser Ch 8.1-8.2

Mark Bun April 22, 2020

NP-completeness

Definition: A language *B* is NP-complete if

- 1) $B \in NP$, and
- 2) Every language $A \in NP$ is poly-time reducible to *B*, i.e., $A \leq_p B$ ("*B* is NP-hard")

Theorem: If $C \in NP$ and $B \leq_p C$ for some NP-complete language *B*, then *C* is also NP-complete

3SAT (3-CNF Satisfiability)

 x_5 , $\overline{x_7}$

Definition(s):

- A literal either a variable of its negation
- A clause is a disjunction (OR) of literals Ex. $x_5 \vee \overline{x_7} \vee x_2$
- A 3-CNF is a conjunction (AND) of clauses where each clause contains exactly 3 literals

Ex.
$$C_1 \wedge C_2 \wedge ... \wedge C_m =$$

 $(x_5 \vee \overline{x_7} \vee x_2) \wedge (\overline{x_3} \vee x_4 \vee x_1) \wedge \cdots \wedge (x_1 \vee x_1 \vee x_1)$

 $3SAT = \{\langle \varphi \rangle | \varphi \text{ is a satisfiable } 3 - CNF \}$ Cook-Levin Theorem: 3SAT is NP-complete

Some general reduction strategies

- Reduction by simple equivalence Ex. *INDEPENDENT* – *SET* \leq_p *VERTEX* – *COVER* and *VERTEX* – *COVER* \leq_p *INDEPENDENT* – *SET*
- Reduction from special case to general case Ex. $VERTEX - COVER \leq_p SET - COVER$

• Gadget reductions Ex. $3SAT \leq_{p} INDEPENDENT - SET$

Independent Set

An **independent set** in an undirected graph G is a set of vertices that includes at most one endpoint of every edge.

INDEPENDENT - SET

= { $\langle G, k \rangle | G$ is an undirected graph containing an independent set with $\geq k$ vertices}

- Is there an independent set of size \geq 6?
 - Yes. independent set
- Is there an independent set of size \geq 7?
 - No.

Independent Set is NP-complete

- 1) $INDEPENDENT SET \in NP$
- 2) Reduce $3SAT \leq_{p} INDEPENDENT SET$

Proof. "On input $\langle \varphi \rangle$, where φ is a 3CNF formula,

- 1. Construct graph G from φ
 - G contains 3 vertices for each clause, one for each literal.
 - Connect 3 literals in a clause in a triangle.
 - Connect literal to each of its negations.
- 2. Output $\langle G, k \rangle$, where k is the number of clauses in φ ."

Example of the reduction

 $\varphi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)$

Proof of correctness for reduction

Let k = # clauses and l = # literals in φ

Claim: φ is satisfiable iff G has an ind. set of size k

 \Rightarrow Given a satisfying assignment, select one literal from each triangle. This is an ind. set of size k

 $\leftarrow \mathsf{Let} S \mathsf{ be an ind. set of size } k \mathsf{ }$

- *S* must contain exactly one vertex in each triangle
- Set these literals to true, and set all other variables in an arbitrary way
- Truth assignment is consistent and all clauses satisfied

Runtime: $O(k + l^2)$ which is polynomial in input size

4/22/2020

Space Complexity

Complexity measures we've studied so far

- Deterministic time TIME
- Nondeterministic time NTIME
- Classes P, NP

Many other resources of interest:

Space (memory), randomness, parallel runtime / #processors, quantum entanglement, interaction, communication, ...

Space analysis

Space complexity of a TM (algorithm) = maximum number of tape cell it uses on a worst-case input

Formally: Let $f : \mathbb{N} \to \mathbb{N}$. A TM *M* runs in space f(n) if on every input $w \in \Sigma^*$, *M* halts on *w* using at most f(n) cells

For nondeterministic machines: Let $f : \mathbb{N} \to \mathbb{N}$. An NTM *N* runs in space f(n) if on every input $w \in \Sigma^*$, *N* halts on *w* using at most f(n) cells on every computational branch

Space complexity classes

Let $f : \mathbb{N} \to \mathbb{N}$

A language $A \in \text{SPACE}(f(n))$ if there exists a basic singletape (deterministic) TM M that

- 1) Decides A, and
- 2) Runs in space O(f(n))

A language $A \in NSPACE(f(n))$ if there exists a singletape nondeterministic TM N that

- 1) Decides A, and
- 2) Runs in space O(f(n))

Example: Space complexity of SAT

Theorem: $SAT \in SPACE(n)$

Proof: The following deterministic TM decides *SAT* using linear space

On input $\langle arphi
angle$ where arphi is a Boolean formula:

- 1. For each truth assignment to the variables x_1, \ldots, x_m of φ :
- 2. Evaluate φ on x_1, \ldots, x_m
- 3. If any evaluation = 1, accept. Else, reject.

Example: NFA analysis

Theorem: Let $ALL_{NFA} = \{A \mid A \text{ is an NFA with } L(A) = \Sigma^* \}$ Then $\overline{ALL_{NFA}} \in \text{NSPACE}(n)$.

Proof: The following NTM decides ALL_{NFA} in linear space

On input $\langle A \rangle$ where A is an NTM:

- 1. Place a marker on the start state of *A*.
- 2. Repeat 2^q times where q is the # of states of A:
- 3. Nondeterministically select $a \in \Sigma$.
- 4. Adjust the markers to simulate all ways for A to read a.
- 5. Accept if at any point *none* of the markers are on an accept state. Else, reject.

Space vs. Time

Space vs. Time

 $TIME(f(n)) \subseteq NTIME(f(n)) \subseteq SPACE(f(n))$

How about the opposite direction? Can low-space algorithms be simulated by low-time algorithms?

Reminder: Configurations

A configuration is a string uqv where $q \in Q$ and $u, v \in \Gamma^*$

- Tape contents = uv (followed by blanks \sqcup)
- Current state = q
- Tape head on first symbol of v

Example: $101q_50111$

Start configuration: $q_0 w$ Accepting configuration: $q = q_{accept}$ Rejecting configuration: $q = q_{reject}$

Reminder: Configurations

T

Consider a TM with

- k states
- tape alphabet {0, 1}
- space f(n)

How many configurations are possible when this TM is run on an input $w \in \{0,1\}^n$?

Observation: If a TM enters the same configuration twice when run on input *w*, it loops forever

Corollary: A TM running in space f(n) also runs in time $2^{O(f(n))}$

Savitch's Theorem

Savitch's Theorem: Deterministic vs. Nondeterministic Space

Theorem: Let f be a function with $f(n) \ge n$. Then $NSPACE(f(n)) \subseteq SPACE((f(n))^2)$.

Proof idea:

- Let N be an NTM deciding f in space f(n)
- We construct a TM *M* deciding *f* in space $O\left(\left(f(n)\right)^2\right)$
- Actually solve a more general problem:
 - Given configurations c_1, c_2 of N and natural number t, decide whether N can go from c_1 to c_2 in $\leq t$ steps on some nondeterministic path.
 - Procedure CANYIELD(c_1, c_2, t)

Savitch's Theorem

Theorem: Let f be a function with $f(n) \ge n$. Then $NSPACE(f(n)) \subseteq SPACE((f(n))^2)$.

Proof idea:

- Let N be an NTM deciding f in space f(n)
- M = "On input w:

1. Output the result of CANYIELD($c_1, c_2, 2^{df(n)}$)"

Where CANYIELD (c_1, c_2, t) decides whether N can go from configuration c_1 to c_2 in $\leq t$ steps on some nondeterministic path

Savitch's Theorem

CANYIELD (c_1, c_2, t) decides whether N can go from configuration c_1 to c_2 in $\leq t$ steps on some nondeterministic path:

- $\mathsf{CANYIELD}(c_1, c_2, t) =$
- 1. If t = 1, accept if $c_1 = c_2$ or c_1 yields c_2 in one transition. Else, reject.
- 2. If t > 1, then for each config c_{mid} of N with $\leq f(n)$ cells:
- 3. Run CANYIELD($\langle c_1, c_{mid}, t/2 \rangle$).
- 4. Run CANYIELD($\langle c_{mid}, c_2, t/2 \rangle$).
- 5. If both runs accept, accept.
- 6. Reject.

Complexity class PSPACE

Definition: PSPACE is the class of languages decidable in polynomial space on a basic single-tape (deterministic) TM

 $PSPACE = \bigcup_{k=1}^{\infty} SPACE(n^k)$

Definition: NPSPACE is the class of languages decidable in polynomial space on a single-tape (nondeterministic) TM NPSPACE = $\bigcup_{k=1}^{\infty} NSPACE(n^k)$ Relationships between complexity classes 1. $P \subseteq NP \subseteq PSPACE \subseteq EXP$ since $SPACE(f(n)) \subseteq TIME(2^{O(f(n))})$

2. P ≠ EXP (Monday)
Which containments
in (1) are proper?
Unknown!

