BU CS 332 — Theory of Computation

Lecture 22:
* NP-Completeness Example Reading:

e Savitch’s Theorem

Mark Bun
April 22, 2020

NP-completeness

Definition: A language B is NP-complete if

1) B € NP, and
2) Every language A € NP is poly-time reducible to

B,i.e., A <, B (“B is NP-hard")

Theorem: If C € NP and B <, C for some NP-complete
language B, then C is also NP-complete

4/22/2020 CS332 - Theory of Computation 2

3SAT (3-CNF Satisfiability)

@‘

* A literal either a variable of its negation Xs, X7

Definition(s):

* A clause is a disjunction (OR) of literals Ex. x5 VX7 V X,

* A 3-CNF is a conjunction (AND) of clauses where each
clause contains exactly 3 literals

EX. ClACZ/\/\Cm =
(s VX7 VX)) NGV X VX)N NAN(Xy VXLV X)

3SAT = {{@)|@ is a satisfiable 3 — CNF} T

Cook-Levin Theorem: 3SAT is NP-complete -

4/22/2020 CS332 - Theory of Computation 3

Some general reduction strategies

* Reduction by simple equivalence

Ex. INDEPENDENT — SET <, VERTEX — COVER
and VERTEX — COVER <, INDEPENDENT — SET

* Reduction from special case to general case
Ex. VERTEX — COVER <p SET — COVER

* Gadget reductions
Ex. 3SAT <, INDEPENDENT — SET

4/22/2020 CS332 - Theory of Computation

Independent Set

An independent set in an undirected graph G is a set of vertices
that includes at most one endpoint of every edge.

INDEPENDENT — SET
= {(G, k)|G is an undirected graph containing an independent set with > k vertices}

* |s there an independent set of size > 67?
e Yes. @ independent set

* |s there an independent set of size > 77
* No.

4/22/2020 CS332 - Theory of Computation 5

Independent Set is NP-complete

1) INDEPENDENT — SET € NP
2) Reduce 3SAT <, INDEPENDENT — SET

Proof. “Oninput (@), where ¢ is a 3CNF formula,

1. Construct graph G from @
e (7 contains 3 vertices for each clause, one for each literal.

* Connect 3 literals in a clause in a triangle.
e Connect literal to each of its negations.

2. Output (G, k), where k is the number of clauses in ¢.”

4/22/2020 CS332 - Theory of Computation

Example of the reduction

@ =TV Vag) Ay VIV x3) ALV Xy Vxy)

4/22/2020 CS332 - Theory of Computation

Proof of correctness for reduction

Let k = # clauses and [= # literals in ¢
Claim: @ is satisfiable iff G has an ind. set of size k

= Given a satisfying assignment, select one literal from each
triangle. This is an ind. set of size k

< Let S be an ind. set of size k
* S must contain exactly one vertex in each triangle

* Set these literals to true, and set all other variables in an arbitrary
way

e Truth assignment is consistent and all clauses satisfied

Runtime: O (k + %) which is polynomial in input size

Space Complexity

4/22/2020 (CS332 - Theory of Computation

Complexity measures we’ve studied so far

* Deterministic time TIME
* Nondeterministic time NTIME
e Classes P, NP

Many other resources of interest:

Space (memory), randomness, parallel runtime /
#processors, quantum entanglement, interaction,
communication, ...

4/22/2020 CS332 - Theory of Computation 10

Space analysis

Space complexity of a TM (algorithm) = maximum number
of tape cell it uses on a worst-case input

Formally: Let f : N - N.ATM M runs in space f(n) if on
every input w € £*, M halts on w using at most f(n) cells

For nondeterministic machines: Letf : N — N. An NTM
N runs in space f(n) if on every inputw € £*, N haltsonw
using at most f(n) cells on every computational branch

4/22/2020 CS332 - Theory of Computation 11

Space complexity classes

letf : N> N

A language A € SPACE(f (n)) if there exists a basic single-
tape (deterministic) TM M that

1) Decides A4, and
2) Runs in space O(f (n))

A language A € NSPACE(f (n)) if there exists a single-
tape nondeterministic TM N that

1) Decides A, and
2) Runs in space O(f (n))

4/22/2020 CS332 - Theory of Computation 12

Example: Space complexity of SAT

Theorem: SAT € SPACE(n)

Proof: The following deterministic TM decides SAT using
linear space

On input (@) where ¢ is a Boolean formula:
1. For each truth assignment to the variables
X1, -y Xm OF @:
2. Evaluate @ on x4, ..., X,

3. If any evaluation = 1, accept. Else, reject.

4/22/2020 CS332 - Theory of Computation 13

Example: NFA analysis

Theorem: Let ALLyp, = {A |A is an NFA with L(4) = X%}
Then ALLNFA (S NSPACE(n)
Proof: The following NTM decides ALLyr,4 in linear space

On input (4) where 4 is an NTM:

1. Place a marker on the start state of A.

2. Repeat 29 times where q is the # of states of A:

3 Nondeterministically select a € X.

4, Adjust the markers to simulate all ways for A to read a.

5. Acceptif at any point none of the markers are on an accept
state. Else, reject.

4/22/2020 CS332 - Theory of Computation 14

Example

Space vs. Time

4/22/2020 CS332 - Theory of Computation

16

Space vs. Time

TIME(f(n)) S NTIME(f(n)) € SPACE(f(n))

How about the opposite direction? Can low-space
algorithms be simulated by low-time algorithms?

Reminder: Configurations

A configuration is a string uqv whereq € Q and u,v € I'"
* Tape contents = uv (followed by blanks U)

* Current state =g

* Tape head on first symbol of v

Example: 1019g:0111

Start configuration: gow
Accepting configuration: g = qaccept
Rejecting configuration: g = qreject

4/22/2020 CS332 - Theory of Computation 18

Reminder: Configurations . §

Consider a TM with

* k states

* tape alphabet {0, 1}
* space f(n)

How many configurations are possible when this TM is run on
an inputw € {0,1}*?

Observation: If a TM enters the same configuration twice
when run on input w, it loops forever

Corollary: ATM running in space f(n) also runs in time
20(f(n))

4/22/2020 CS332 - Theory of Computation 19

Savitch’s Theorem

4/22/2020 (CS332 - Theory of Computation

Savitch’s Theorem: Deterministic vs.
Nondeterministic Space

Theorem: Let f be a function with f(n) = n. Then
NSPACE(f(n)) € SPACE ((f(n))z) .

Proof idea:
* Let N be an NTM deciding f in space f(n)

* We construct a TM M deciding f in space O ((f(n))z)

* Actually solve a more general problem:

* Given configurations ¢4, ¢, of N and natural number ¢,
decide whether N can go from ¢; to ¢, in < t steps
on some nondeterministic path.

* Procedure CANYIELD(cq, €5, t)

4/22/2020 CS332 - Theory of Computation 21

Savitch’s Theorem

Theorem: Let f be a function with f(n) = n. Then
NSPACE(f(n)) € SPACE ((f(n))z) .

Proof idea:
* Let N be an NTM deciding f in space f(n)
M = “On input w:
1. Output the result of CANYIELD(cy, ¢y, 2%/ (W)~

Where CANYIELD(c4, ¢y, t) decides whether N can go from
configuration ¢4 to ¢, in < t steps on some nondeterministic
path

Savitch’s Theorem

CANYIELD(cq, ¢y, t) decides whether N can go from configuration
c1 to ¢, in < t steps on some nondeterministic path:

CANYIELD(cq, Cy, t) =
1. Ift =1, acceptif ¢y = ¢y or ¢q yields ¢, in one transition.
Else, reject.
If t > 1, then for each config c¢,,;;4 of N with < f(n) cells:
Run CANYIELD({c1, Cinia, t/2)).
Run CANYIELD({C),;4, C2,t/2)).
If both runs accept, accept.

o Uk W

Reject.

4/22/2020 CS332 - Theory of Computation 23

Complexity class PSPACE

Definition: PSPACE is the class of languages decidable in
polynomial space on a basic single-tape (deterministic) TM

PSPACE = Ujy_; SPACE(n*)

Definition: NPSPACE is the class of languages decidable in
polynomial space on a single-tape (nondeterministic) TM

NPSPACE = Uj_; NSPACE(n®)
T

4/22/2020 CS332 - Theory of Computation 24

Relationships between complexity classes
1. P € NP C PSPACE C EXP
since SPACE(f(n)) € TIME (20U (D)

PSPACE=NPSPACE

2. P # EXP (Monday)

Which containments NP
in (1) are proper?
Unknown!

	BU CS 332 – Theory of Computation
	NP-completeness
	3𝑆𝐴𝑇 (3-CNF Satisfiability)
	Some general reduction strategies
	Independent Set
	Independent Set is NP-complete
	Example of the reduction
	Proof of correctness for reduction
	Space Complexity
	Complexity measures we’ve studied so far
	Space analysis
	Space complexity classes
	Example: Space complexity of SAT
	Example: NFA analysis
	Example
	Space vs. Time
	Space vs. Time
	Reminder: Configurations
	Reminder: Configurations
	Savitch’s Theorem
	Savitch’s Theorem: Deterministic vs. Nondeterministic Space
	Savitch’s Theorem
	Savitch’s Theorem
	Complexity class PSPACE
	Relationships between complexity classes

