Lecture 22:

• NP-Completeness Example
• Space Complexity
• Savitch’s Theorem

Reading:
Sipser Ch 8.1-8.2

Mark Bun
April 22, 2020
NP-completeness

Definition: A language B is NP-complete if

1) $B \in \text{NP}$, and

2) Every language $A \in \text{NP}$ is poly-time reducible to B, i.e., $A \leq_p B$ ("B is NP-hard")

Theorem: If $C \in \text{NP}$ and $B \leq_p C$ for some NP-complete language B, then C is also NP-complete
3SAT (3-CNF Satisfiability)

Definition(s):

• A literal either a variable of its negation \(x_5, \overline{x_7} \)
• A clause is a disjunction (OR) of literals Ex. \(x_5 \lor \overline{x_7} \lor x_2 \)
• A 3-CNF is a conjunction (AND) of clauses where each clause contains exactly 3 literals

Ex. \(C_1 \land C_2 \land \ldots \land C_m = (x_5 \lor \overline{x_7} \lor x_2) \land (\overline{x_3} \lor x_4 \lor x_1) \land \ldots \land (x_1 \lor x_1 \lor x_1) \)

3SAT = \{⟨φ⟩|φ is a satisfiable 3 − CNF\}

Cook-Levin Theorem: 3SAT is NP-complete
Some general reduction strategies

• Reduction by simple equivalence
 Ex. $INDEPENDENT - SET \leq_p VERTEX - COVER$
 and $VERTEX - COVER \leq_p INDEPENDENT - SET$

• Reduction from special case to general case
 Ex. $VERTEX - COVER \leq_p SET - COVER$

• Gadget reductions
 Ex. $3SAT \leq_p INDEPENDENT - SET$
Independent Set

An **independent set** in an undirected graph G is a set of vertices that includes at most one endpoint of every edge.

$$INDEPENDENT - SET = \{(G, k)|G \text{ is an undirected graph containing an independent set with } \geq k \text{ vertices}\}$$

- Is there an independent set of size ≥ 6?
 - Yes.

- Is there an independent set of size ≥ 7?
 - No.
Independent Set is NP-complete

1) \textit{INDEPENDENT} – \textit{SET} ∈ \text{NP}

2) Reduce \textit{3SAT} \leq_p \textit{INDEPENDENT} – \textit{SET}

Proof. “On input \(\phi\), where \(\phi\) is a 3CNF formula,

1. Construct graph \(G\) from \(\phi\)
 - \(G\) contains 3 vertices for each clause, one for each literal.
 - Connect 3 literals in a clause in a triangle.
 - Connect literal to each of its negations.

2. Output \((G, k)\), where \(k\) is the number of clauses in \(\phi\).”
Example of the reduction

\[\varphi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4) \]
Proof of correctness for reduction

Let \(k = \# \) clauses and \(l = \# \) literals in \(\varphi \)

Claim: \(\varphi \) is satisfiable iff \(G \) has an ind. set of size \(k \)

\[\implies \text{Given a satisfying assignment, select one literal from each triangle. This is an ind. set of size } k \]

\[\impliedby \text{Let } S \text{ be an ind. set of size } k \]

• \(S \) must contain exactly one vertex in each triangle
• Set these literals to true, and set all other variables in an arbitrary way
• Truth assignment is consistent and all clauses satisfied

Runtime: \(O(k + l^2) \) which is polynomial in input size
Space Complexity
Complexity measures we’ve studied so far

- Deterministic time TIME
- Nondeterministic time NTIME
- Classes P, NP

Many other resources of interest:

- Space (memory), randomness, parallel runtime / $\#$processors, quantum entanglement, interaction, communication, ...
Space analysis

Space complexity of a TM (algorithm) = maximum number of tape cell it uses on a worst-case input

Formally: Let $f : \mathbb{N} \rightarrow \mathbb{N}$. A TM M runs in space $f(n)$ if on every input $w \in \Sigma^*$, M halts on w using at most $f(n)$ cells.

For nondeterministic machines: Let $f : \mathbb{N} \rightarrow \mathbb{N}$. An NTM N runs in space $f(n)$ if on every input $w \in \Sigma^*$, N halts on w using at most $f(n)$ cells on every computational branch.
Space complexity classes

Let $f : \mathbb{N} \rightarrow \mathbb{N}$

A language $A \in \text{SPACE}(f(n))$ if there exists a basic single-tape (deterministic) TM M that
1) Decides A, and
2) Runs in space $O(f(n))$

A language $A \in \text{NSPACE}(f(n))$ if there exists a single-tape nondeterministic TM N that
1) Decides A, and
2) Runs in space $O(f(n))$
Example: Space complexity of SAT

Theorem: \(SAT \in \text{SPACE}(n) \)

Proof: The following deterministic TM decides \(SAT \) using linear space

On input \(\langle \varphi \rangle \) where \(\varphi \) is a Boolean formula:

1. For each truth assignment to the variables \(x_1, \ldots, x_m \) of \(\varphi \):
2. Evaluate \(\varphi \) on \(x_1, \ldots, x_m \)
3. If any evaluation \(= 1 \), accept. Else, reject.
Example: NFA analysis

Theorem: Let $ALL_{NFA} = \{A \mid A \text{ is an NFA with } L(A) = \Sigma^*\}$
Then $ALL_{NFA} \in \text{NSPACE}(n)$.

Proof: The following NTM decides ALL_{NFA} in linear space

On input $\langle A \rangle$ where A is an NTM:
1. Place a marker on the start state of A.
2. Repeat 2^q times where q is the # of states of A:
3. Nondeterministically select $a \in \Sigma$.
4. Adjust the markers to simulate all ways for A to read a.
5. **Accept** if at any point *none* of the markers are on an accept state. Else, **reject**.
Example
Space vs. Time
Space vs. Time

\[\text{TIME}(f(n)) \subseteq \text{NTIME}(f(n)) \subseteq \text{SPACE}(f(n)) \]

How about the opposite direction? Can low-space algorithms be simulated by low-time algorithms?
Reminder: Configurations

A configuration is a string \(uqv \) where \(q \in Q \) and \(u, v \in \Gamma^* \)

- Tape contents = \(uv \) (followed by blanks \(\sqcup \))
- Current state = \(q \)
- Tape head on first symbol of \(v \)

Example: \(101q_50111 \)

Start configuration: \(q_0\w \)

Accepting configuration: \(q = q_{\text{accept}} \)

Rejecting configuration: \(q = q_{\text{reject}} \)
Consider a TM with

- \(k \) states
- tape alphabet \(\{0, 1\} \)
- space \(f(n) \)

How many configurations are possible when this TM is run on an input \(w \in \{0,1\}^n \)?

Observation: If a TM enters the same configuration twice when run on input \(w \), it loops forever

Corollary: A TM running in space \(f(n) \) also runs in time \(2^{O(f(n))} \)
Savitch’s Theorem
Savitch’s Theorem: Deterministic vs. Nondeterministic Space

Theorem: Let f be a function with $f(n) \geq n$. Then $NSPACE(f(n)) \subseteq SPACE\left((f(n))^2\right)$.

Proof idea:

- Let N be an NTM deciding f in space $f(n)$
- We construct a TM M deciding f in space $O\left((f(n))^2\right)$
- Actually solve a more general problem:
 - Given configurations c_1, c_2 of N and natural number t, decide whether N can go from c_1 to c_2 in $\leq t$ steps on some nondeterministic path.
 - Procedure CANYIELD(c_1, c_2, t)
Savitch’s Theorem

Theorem: Let f be a function with $f(n) \geq n$. Then $NSPACE(f(n)) \subseteq SPACE\left((f(n))^2\right)$.

Proof idea:

• Let N be an NTM deciding f in space $f(n)$

$M =$ “On input w:

1. Output the result of $CANYIELD(c_1, c_2, 2^{df(n)})$”

Where $CANYIELD(c_1, c_2, t)$ decides whether N can go from configuration c_1 to c_2 in $\leq t$ steps on some nondeterministic path
Savitch’s Theorem

CANYIELD\((c_1, c_2, t)\) decides whether \(N\) can go from configuration \(c_1\) to \(c_2\) in \(\leq t\) steps on some nondeterministic path:

CANYIELD\((c_1, c_2, t)\) =

1. If \(t = 1\), accept if \(c_1 = c_2\) or \(c_1\) yields \(c_2\) in one transition. Else, reject.
2. If \(t > 1\), then for each config \(c_{mid}\) of \(N\) with \(\leq f(n)\) cells:
 3. Run CANYIELD\((\langle c_1, c_{mid}, t/2 \rangle)\).
 4. Run CANYIELD\((\langle c_{mid}, c_2, t/2 \rangle)\).
 5. If both runs accept, accept.
 6. Reject.
Complexity class **PSPACE**

Definition: PSPACE is the class of languages decidable in polynomial space on a basic single-tape (deterministic) TM

\[\text{PSPACE} = \bigcup_{k=1}^{\infty} \text{SPACE}(n^k) \]

Definition: NPSPACE is the class of languages decidable in polynomial space on a single-tape (nondeterministic) TM

\[\text{NPSPACE} = \bigcup_{k=1}^{\infty} \text{NSPACE}(n^k) \]
Relationships between complexity classes

1. \(P \subseteq NP \subseteq \text{PSPACE} \subseteq \text{EXP} \)
Since \(SPACE(f(n)) \subseteq \text{TIME}(2^O(f(n))) \)

2. \(P \neq \text{EXP} \) (Monday)
Which containments in (1) are proper?
Unknown!