
BU CS 332 – Theory of Computation

Lecture 23:
• Savitch’s Theorem
• PSPACE-Completeness
• Unconditional Hardness
• Course Evaluations

Reading:
Sipser Ch 8.1-8.3, 9.1

Mark Bun
April 27, 2020



Space analysis
Space complexity of a TM (algorithm) = maximum number 
of tape cell it uses on a worst-case input

Formally: Let 𝑓𝑓 ∶ ℕ → ℕ. A TM 𝑀𝑀 runs in space 𝑓𝑓(𝑛𝑛) if on 
every input 𝑤𝑤 ∈ Σ∗, 𝑀𝑀 halts on 𝑤𝑤 using at most 𝑓𝑓 𝑛𝑛 cells

For nondeterministic machines:   Let 𝑓𝑓 ∶ ℕ → ℕ. An NTM
𝑁𝑁 runs in space 𝑓𝑓(𝑛𝑛) if on every input 𝑤𝑤 ∈ Σ∗, 𝑁𝑁 halts on 𝑤𝑤
using at most 𝑓𝑓 𝑛𝑛 cells on every computational branch

4/27/2020 CS332 - Theory of Computation 2



Space complexity classes

Let 𝑓𝑓 ∶ ℕ → ℕ

A language 𝐴𝐴 ∈ SPACE(𝑓𝑓(𝑛𝑛)) if there exists a basic single-
tape (deterministic) TM 𝑀𝑀 that 
1) Decides 𝐴𝐴, and
2) Runs in space 𝑂𝑂(𝑓𝑓(𝑛𝑛))

A language 𝐴𝐴 ∈ NSPACE(𝑓𝑓(𝑛𝑛)) if there exists a single-
tape nondeterministic TM 𝑁𝑁 that 
1) Decides 𝐴𝐴, and
2) Runs in space 𝑂𝑂(𝑓𝑓(𝑛𝑛))

4/27/2020 CS332 - Theory of Computation 3



Savitch’s Theorem

4/27/2020 CS332 - Theory of Computation 4



Savitch’s Theorem: Deterministic vs. 
Nondeterministic Space
Theorem: Let 𝑓𝑓 be a function with 𝑓𝑓 𝑛𝑛 ≥ 𝑛𝑛. Then 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑓𝑓 𝑛𝑛 ⊆ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑓𝑓 𝑛𝑛 2 .

Proof idea:
• Let 𝑁𝑁 be an NTM deciding 𝑓𝑓 in space 𝑓𝑓(𝑛𝑛)

• We construct a TM 𝑀𝑀 deciding 𝑓𝑓 in space 𝑂𝑂 𝑓𝑓 𝑛𝑛 2

• Actually solve a more general problem:
• Given configurations 𝑐𝑐1, 𝑐𝑐2 of 𝑁𝑁 and natural number 𝑡𝑡,                              

decide whether 𝑁𝑁 can go from 𝑐𝑐1 to 𝑐𝑐2 in ≤ 𝑡𝑡 steps                          
on some nondeterministic path.

• Design procedure CANYIELD(𝑐𝑐1, 𝑐𝑐2, 𝑡𝑡)

4/27/2020 CS332 - Theory of Computation 5



Savitch’s Theorem
Theorem: Let 𝑓𝑓 be a function with 𝑓𝑓 𝑛𝑛 ≥ 𝑛𝑛. Then 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑓𝑓 𝑛𝑛 ⊆ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑓𝑓 𝑛𝑛 2 .

Proof idea:
• Let 𝑁𝑁 be an NTM deciding 𝑓𝑓 in space 𝑓𝑓(𝑛𝑛)
𝑀𝑀 = “On input 𝑤𝑤:

1. Output the result of CANYIELD(𝑐𝑐1, 𝑐𝑐2, 2𝑑𝑑𝑓𝑓 𝑛𝑛 )”

where CANYIELD(𝑐𝑐1, 𝑐𝑐2, 𝑡𝑡) decides whether 𝑁𝑁 can go from 
configuration 𝑐𝑐1 to 𝑐𝑐2 in ≤ 𝑡𝑡 steps on some nondeterministic 
path

4/27/2020 CS332 - Theory of Computation 6



Savitch’s Theorem
CANYIELD(𝑐𝑐1, 𝑐𝑐2, 𝑡𝑡) decides whether 𝑁𝑁 can go from configuration 
𝑐𝑐1 to 𝑐𝑐2 in ≤ 𝑡𝑡 steps on some nondeterministic path:

CANYIELD(𝑐𝑐1, 𝑐𝑐2, 𝑡𝑡) = 
1. If 𝑡𝑡 = 1, accept if 𝑐𝑐1 = 𝑐𝑐2 or 𝑐𝑐1 yields 𝑐𝑐2 in one transition. 

Else, reject.
2. If 𝑡𝑡 > 1, then for each config 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 of 𝑁𝑁 with ≤ 𝑓𝑓 𝑛𝑛 cells: 
3. Run CANYIELD(〈𝑐𝑐1, 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑡𝑡/2〉).
4. Run CANYIELD(〈𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑐𝑐2, 𝑡𝑡/2〉).
5. If both runs accept, accept.
6. Reject.

4/27/2020 CS332 - Theory of Computation 7



Complexity class PSPACE

Definition: PSPACE is the class of languages decidable in 
polynomial space on a basic single-tape (deterministic) TM

PSPACE = ⋃𝑘𝑘=1
∞ SPACE(𝑛𝑛𝑘𝑘)

Definition: NPSPACE is the class of languages decidable in 
polynomial space on a single-tape (nondeterministic) TM

NPSPACE = ⋃𝑘𝑘=1
∞ NSPACE(𝑛𝑛𝑘𝑘)

4/27/2020 CS332 - Theory of Computation 8



Relationships between complexity classes

4/27/2020 CS332 - Theory of Computation 9

1. P ⊆ NP ⊆ PSPACE ⊆ EXP
since 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑓𝑓 𝑛𝑛 ⊆ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(2𝑂𝑂(𝑓𝑓 𝑛𝑛 ))

2. P ≠ EXP (Monday)
Which containments

in (1) are proper?
Unknown!

PSPACE=NPSPACE

EXP

P
NP



PSPACE-Completeness

4/27/2020 CS332 - Theory of Computation 10



What happens in a world where P ≠ PSPACE?

Even more believable than P ≠ NP, but still(!) very far from 
proving it

Question: What would P ≠ PSPACE allow us to conclude 
about problems we care about?

PSPACE-completeness: Find the “hardest” problems in PSPACE
Find 𝐿𝐿 ∈ PSPACE such that 𝐿𝐿 ∈ P iff P = PSPACE

4/27/2020 CS332 - Theory of Computation 11



Reminder: NP-completeness
Definition: A language 𝐵𝐵 is NP-complete if

1) 𝐵𝐵 ∈ NP, and
2) Every language 𝐴𝐴 ∈ NP is poly-time reducible to 
𝐵𝐵, i.e., 𝐴𝐴 ≤p 𝐵𝐵 (“𝐵𝐵 is NP-hard”)

4/27/2020 CS332 - Theory of Computation 12



PSPACE-completeness
Definition: A language 𝐵𝐵 is PSPACE-complete if

1) 𝐵𝐵 ∈ PSPACE, and
2) Every language 𝐴𝐴 ∈ PSPACE is poly-time reducible to 

𝐵𝐵, i.e., 𝐴𝐴 ≤p 𝐵𝐵 (“𝐵𝐵 is PSPACE-hard”)

4/27/2020 CS332 - Theory of Computation 13



A PSPACE-complete problem: TQBF
“Is a fully quantified logical formula true?”
• Boolean variable: Variable that can take on the value 

true/false (encoded as 0/1)
• Boolean operations: ∧ AND , ∨ OR , ¬ (NOT)
• Boolean formula: Expression made of Boolean variables and 

operations. Ex: (𝑥𝑥1 ∨ 𝑥𝑥2) ∧ 𝑥𝑥3
• Fully quantified Boolean formula: Boolean formula with all 

variables quantified (∀,∃) Ex: ∀𝑥𝑥1∃𝑥𝑥3∀𝑥𝑥2 (𝑥𝑥1 ∨ 𝑥𝑥2) ∧ 𝑥𝑥3
• Every fully quantified Boolean formula is either true or false

• 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝜑𝜑 𝜑𝜑 is a true fully quantified formula

4/27/2020 CS332 - Theory of Computation 14



Theorem: TQBF is PSPACE-complete
Need to prove two things…  

1) 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ∈ PSPACE

2) Every problem in PSPACE is poly-time reducible to 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is PSPACE-hard)

4/27/2020 CS332 - Theory of Computation 15



1) TQBF is in PSPACE

4/27/2020 CS332 - Theory of Computation 16

• If 𝑛𝑛 is the input length, 𝑇𝑇 uses space 𝑂𝑂 𝑛𝑛 .

𝑇𝑇 = “On input 〈𝜑𝜑〉, 
where 𝜑𝜑 is a fully quantified Boolean formula:

1. If 𝜑𝜑 has no quantifiers, it has only constants 
(and no variables). Evaluate 𝜑𝜑.
If true, accept; else, reject.

2. If 𝜑𝜑 is of the form ∃𝑥𝑥 𝜓𝜓, recursively call 𝑇𝑇
on 𝜓𝜓 with 𝑥𝑥 = 0 and then on 𝜓𝜓 with 𝑥𝑥 = 1.

If either call accepts, accept; else, reject.
3. If 𝜑𝜑 is of the form ∀𝑥𝑥 𝜓𝜓, recursively call 𝑇𝑇

on 𝜓𝜓 with 𝑥𝑥 = 0 and then on 𝜓𝜓 with 𝑥𝑥 = 1.
If both calls accept, accept; else, reject.’’



2) TQBF is PSPACE-hard
Theorem: Every language 𝐴𝐴 ∈ PSPACE is poly-time 
reducible to 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
Proof idea:
Let 𝐴𝐴 ∈ PSPACE be decided by a poly-space deterministic 
TM 𝑀𝑀. Using proof of Cook-Levin Theorem,

𝑀𝑀 accepts input 𝑤𝑤⟺ formula 𝜑𝜑𝑀𝑀,𝑤𝑤 is true

Using idea of Savitch’s Theorem, replace 𝜑𝜑𝑀𝑀,𝑤𝑤 with a 
quantified formula of poly-size that can be computed in 
poly-time

4/27/2020 CS332 - Theory of Computation 17



Unconditional Hardness

4/27/2020 CS332 - Theory of Computation 18



Hardness results so far
• If P ≠ NP, then 3𝑆𝑆𝑆𝑆𝑆𝑆 ∉ 𝑃𝑃

• If P ≠ PSPACE, then 𝑇𝑇𝑄𝑄𝑄𝑄𝑄𝑄 ∉ 𝑃𝑃

Question: Are there decidable languages that we can 
show are not in 𝑃𝑃?

4/27/2020 CS332 - Theory of Computation 19



Diagonalization redux

4/27/2020 CS332 - Theory of Computation 20

TM 𝑀𝑀

𝑀𝑀1

𝑀𝑀2

𝑀𝑀3

𝑀𝑀4

…



Diagonalization redux

4/27/2020 CS332 - Theory of Computation 21

TM 𝑀𝑀 𝑀𝑀( 𝑀𝑀1 )? 𝑀𝑀( 𝑀𝑀2 )? 𝑀𝑀( 𝑀𝑀3 )? 𝑀𝑀( 𝑀𝑀4 )?

𝑀𝑀1 Y N Y Y
𝑀𝑀2 N N Y Y
𝑀𝑀3 Y Y Y N
𝑀𝑀4 N N Y N

…

…

𝑆𝑆𝑆𝑆TM = 𝑀𝑀 𝑀𝑀 is a TM that does not accept input 𝑀𝑀 }
𝑆𝑆𝑆𝑆TM,𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑀𝑀 𝑀𝑀 is a TM that does not accept input 𝑀𝑀

within 2| 𝑀𝑀 | steps}

𝐷𝐷( 𝐷𝐷 )?

𝐷𝐷



An explicit undecidable language
• Theorem: 𝐿𝐿 = 𝑆𝑆𝑆𝑆TM,𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑀𝑀 𝑀𝑀 is a TM that

does not accept input 𝑀𝑀 within 2| 𝑀𝑀 | steps}
is in EXP, but not in P
Proof:
• In EXP: Simulate 𝑀𝑀 on input 𝑀𝑀 for 2| 𝑀𝑀 | steps and flip 

its decision
• Not in P: Suppose for contradiction that 𝐷𝐷 decides 𝐿𝐿 in 

time 𝑛𝑛𝑘𝑘

4/27/2020 CS332 - Theory of Computation 22



Time and space hierarchy theorems
• For any* function 𝑓𝑓 𝑛𝑛 ≥ 𝑛𝑛 log𝑛𝑛 , a language exists that 

is decidable in 𝑓𝑓(𝑛𝑛) time, but not in 𝑜𝑜 𝑓𝑓 𝑛𝑛
log 𝑓𝑓 𝑛𝑛

time. 

• For any* function 𝑓𝑓 𝑛𝑛 ≥ 𝑛𝑛 log𝑛𝑛 , a language exists that 
is decidable in 𝑓𝑓(𝑛𝑛) space, but not in 𝑜𝑜 𝑓𝑓(𝑛𝑛) space. 

*time constructible and space constructible, respectively

4/27/2020 CS332 - Theory of Computation 23



4/27/2020 CS332 - Theory of Computation 24

recognizable

PSPACE=NPSPACE

EXPSPACE

EXPTIME

decidable

P
CFL

regular

NP coNP



Course evaluations

https://bu.campuslabs.com/courseeval

4/27/2020 CS332 - Theory of Computation 25

https://bu.campuslabs.com/courseeval

	BU CS 332 – Theory of Computation
	Space analysis
	Space complexity classes
	Savitch’s Theorem
	Savitch’s Theorem: Deterministic vs. Nondeterministic Space
	Savitch’s Theorem
	Savitch’s Theorem
	Complexity class PSPACE
	Relationships between complexity classes
	PSPACE-Completeness
	What happens in a world where P≠PSPACE?
	Reminder: NP-completeness
	PSPACE-completeness
	A PSPACE-complete problem: TQBF
	Theorem: TQBF is PSPACE-complete
	1) TQBF is in PSPACE
	2) TQBF is PSPACE-hard
	Unconditional Hardness
	Hardness results so far
	Diagonalization redux
	Diagonalization redux
	An explicit undecidable language
	Time and space hierarchy theorems
	Slide Number 24
	Course evaluations

