BU CS 332 – Theory of Computation

Lecture 23:

- Savitch's Theorem
- PSPACE-Completeness
- Unconditional Hardness
- Course Evaluations

Reading:

Sipser Ch 8.1-8.3, 9.1

Mark Bun April 27, 2020

Space analysis

Space complexity of a TM (algorithm) = maximum number of tape cell it uses on a worst-case input

Formally: Let $f : \mathbb{N} \to \mathbb{N}$. A TM M runs in space f(n) if on every input $w \in \Sigma^*$, M halts on w using at most f(n) cells

For nondeterministic machines: Let $f: \mathbb{N} \to \mathbb{N}$. An NTM N runs in space f(n) if on every input $w \in \Sigma^*$, N halts on w using at most f(n) cells on every computational branch

Space complexity classes

Let
$$f: \mathbb{N} \to \mathbb{N}$$

A language $A \in SPACE(f(n))$ if there exists a basic single-tape (deterministic) TM M that

- 1) Decides A, and
- 2) Runs in space O(f(n))

A language $A \in NSPACE(f(n))$ if there exists a single-tape nondeterministic TM N that

- 1) Decides A, and
- 2) Runs in space O(f(n))

Savitch's Theorem

Savitch's Theorem: Deterministic vs. Nondeterministic Space

Theorem: Let f be a function with $f(n) \ge n$. Then $NSPACE(f(n)) \subseteq SPACE(f(n))^2$.

Proof idea:

- Let N be an NTM deciding f in space f(n)
- We construct a TM M deciding f in space $O\left(\left(f(n)\right)^2\right)$
- Actually solve a more general problem:
 - Given configurations c_1 , c_2 of N and natural number t, decide whether N can go from c_1 to c_2 in $\leq t$ steps on some nondeterministic path.
 - Design procedure CANYIELD (c_1, c_2, t)

Savitch's Theorem

Theorem: Let f be a function with $f(n) \ge n$. Then $NSPACE(f(n)) \subseteq SPACE(f(n))^2$.

Proof idea:

• Let N be an NTM deciding f in space f(n)

M = "On input w:

1. Output the result of CANYIELD $(c_1, c_2, 2^{df(n)})$ "

where CANYIELD (c_1, c_2, t) decides whether N can go from configuration c_1 to c_2 in $\leq t$ steps on some nondeterministic path

Savitch's Theorem

CANYIELD (c_1, c_2, t) decides whether N can go from configuration c_1 to c_2 in $\leq t$ steps on some nondeterministic path:

CANYIELD
$$(c_1, c_2, t) =$$

- 1. If t = 1, accept if $c_1 = c_2$ or c_1 yields c_2 in one transition. Else, reject.
- 2. If t > 1, then for each config c_{mid} of N with $\leq f(n)$ cells:
- 3. Run CANYIELD($\langle c_1, c_{mid}, t/2 \rangle$).
- 4. Run CANYIELD($\langle c_{mid}, c_2, t/2 \rangle$).
- 5. If both runs accept, accept.
- 6. Reject.

Complexity class PSPACE

Definition: PSPACE is the class of languages decidable in polynomial space on a basic single-tape (deterministic) TM

$$PSPACE = \bigcup_{k=1}^{\infty} SPACE(n^k)$$

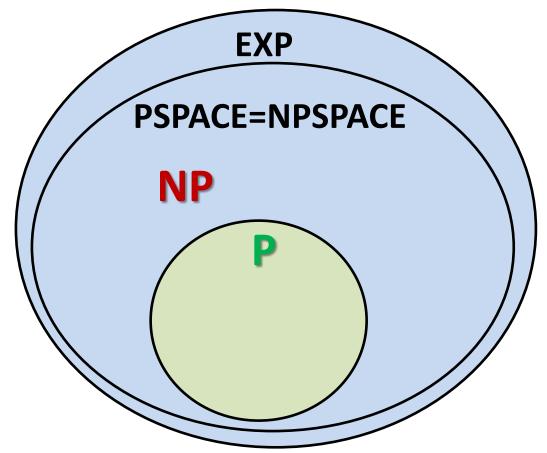
Definition: NPSPACE is the class of languages decidable in polynomial space on a single-tape (nondeterministic) TM

$$NPSPACE = \bigcup_{k=1}^{\infty} NSPACE(n^k)$$

Relationships between complexity classes

1. $P \subseteq NP \subseteq PSPACE \subseteq EXP$ since $SPACE(f(n)) \subseteq TIME(2^{O(f(n))})$

2. P ≠ EXP (Monday)Which containmentsin (1) are proper?Unknown!



PSPACE-Completeness

What happens in a world where $P \neq PSPACE$?

Even more believable than $P \neq NP$, but still(!) very far from proving it

Question: What would $P \neq PSPACE$ allow us to conclude about problems we care about?

PSPACE-completeness: Find the "hardest" problems in PSPACE Find $L \in PSPACE$ such that $L \in P$ iff P = PSPACE

Reminder: NP-completeness

Definition: A language *B* is NP-complete if

- 1) $B \in NP$, and
- 2) Every language $A \in NP$ is poly-time reducible to B, i.e., $A \leq_{p} B$ ("B is NP-hard")

PSPACE-completeness

Definition: A language *B* is PSPACE-complete if

- 1) $B \in PSPACE$, and
- 2) Every language $A \in PSPACE$ is poly-time reducible to B, i.e., $A \leq_p B$ ("B is PSPACE-hard")

A PSPACE-complete problem: TQBF

"Is a fully quantified logical formula true?"

- Boolean variable: Variable that can take on the value true/false (encoded as 0/1)
- Boolean operations: \land (AND), \lor (OR), \neg (NOT)
- Boolean formula: Expression made of Boolean variables and operations. Ex: $(x_1 \lor \overline{x_2}) \land x_3$
- <u>Fully quantified</u> Boolean formula: Boolean formula with all variables quantified (\forall, \exists) Ex: $\forall x_1 \exists x_3 \forall x_2 \quad (x_1 \lor \overline{x_2}) \land x_3$
- Every fully quantified Boolean formula is either true or false
- $TQBF = \{\langle \varphi \rangle | \varphi \text{ is a true fully quantified formula} \}$

Theorem: TQBF is PSPACE-complete

Need to prove two things...

- 1) $TQBF \in PSPACE$
- 2) Every problem in PSPACE is poly-time reducible to TQBF (TQBF is PSPACE-hard)

1) TQBF is in PSPACE

- T= "On input $\langle \varphi \rangle$, where φ is a fully quantified Boolean formula:
 - 1. If φ has no quantifiers, it has only constants (and no variables). Evaluate φ . If true, accept; else, reject.
 - 2. If φ is of the form $\exists x \ \psi$, recursively call T on ψ with x=0 and then on ψ with x=1. If either call accepts, accept; else, reject.
 - 3. If φ is of the form $\forall x \ \psi$, recursively call T on ψ with x=0 and then on ψ with x=1. If both calls accept, accept; else, reject."
- If n is the input length, T uses space O(n).

2) TQBF is PSPACE-hard

Theorem: Every language $A \in PSPACE$ is poly-time reducible to TQBF

Proof idea:

Let $A \in PSPACE$ be decided by a poly-space deterministic TM M. Using proof of Cook-Levin Theorem,

M accepts input $w \Leftrightarrow formula \varphi_{M,w}$ is true

Using idea of Savitch's Theorem, replace $\phi_{M,w}$ with a quantified formula of poly-size that can be computed in poly-time

Unconditional Hardness

Hardness results so far

• If $P \neq NP$, then $3SAT \notin P$

• If $P \neq PSPACE$, then $TQBF \notin P$

Question: Are there decidable languages that we can show are not in P?

Diagonalization redux

TM M			
M_1			
M_2			
M_3			
M_4			
i			

Diagonalization redux

TM M	$M(\langle M_1 \rangle)$?	$M(\langle M_2 \rangle)$?	$M(\langle M_3 \rangle)$?	$M(\langle M_4 \rangle)$?		$D(\langle D \rangle)$?
M_1	Υ	N	Υ	Υ		
M_2	N	N	Υ	Υ		
M_3	Υ	Υ	Υ	N		
M_4	N	N	Υ	N		
i					٠.	
D						

 $\overline{SA_{\text{TM}}} = \{\langle M \rangle \mid M \text{ is a TM that does not accept input } \langle M \rangle \}$ $\overline{SA_{\text{TM},EXP}} = \{\langle M \rangle \mid M \text{ is a TM that does not accept input } \langle M \rangle \}$ $\text{within } 2^{|\langle M \rangle|} \text{ steps} \}$

An explicit undecidable language

• Theorem: $L = \overline{SA_{TM,EXP}} = \{\langle M \rangle \mid M \text{ is a TM that does not accept input } \langle M \rangle \text{ within } 2^{|\langle M \rangle|} \text{ steps} \}$

is in EXP, but not in P

Proof:

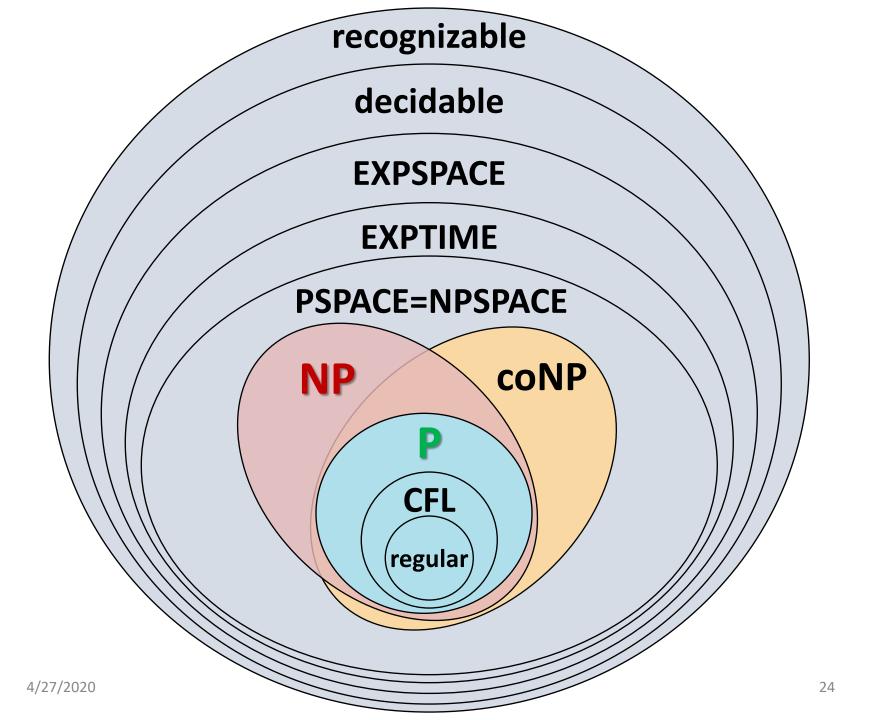
- In EXP: Simulate M on input $\langle M \rangle$ for $2^{|\langle M \rangle|}$ steps and flip its decision
- Not in P: Suppose for contradiction that D decides L in time n^k

Time and space hierarchy theorems

• For any* function $f(n) \ge n \log n$, a language exists that is decidable in f(n) time, but not in $o\left(\frac{f(n)}{\log f(n)}\right)$ time.

• For any* function $f(n) \ge n \log n$, a language exists that is decidable in f(n) space, but not in o(f(n)) space.

*time constructible and space constructible, respectively



Course evaluations

https://bu.campuslabs.com/courseeval