Homework 8 – Due Friday, April 23, 2021 at 11:59 AM

Reminder Collaboration is permitted, but you must write the solutions by yourself without assistance, and be ready to explain them orally to the course staff if asked. You must also identify your collaborators and write “Collaborators: none” if you worked by yourself. Getting solutions from outside sources such as the Web or students not enrolled in the class is strictly forbidden.

Note You may use various generalizations of the Turing machine model we have seen in class, such as TMs with two-way infinite tapes, stay-put, or multiple tapes. If you choose to use such a generalization, state clearly and precisely what model you are using.

Problems There are 5 required problems.

1. (Hierarchy Theorems)
 (a) Use the space hierarchy theorem to show that $\text{SPACE}(n^2) \not\subseteq \text{SPACE}(n)$. (5 points)
 (b) Show that $\mathcal{P} \subseteq \text{TIME}(2^n)$. (5 points)
 (c) Use the time hierarchy theorem to show that $\text{EXP} \not\subseteq \text{TIME}(2^n)$. (5 points)
 (d) Combine parts (b) and (c) to conclude that $\mathcal{P} \neq \text{EXP}$. (5 points)

2. (Closure Properties)
 (a) Show that \mathcal{P} is closed under concatenation. (10 points)
 (b) Show that \mathcal{NP} is closed under intersection. (10 points)

3. (Protein Folding) In the translation stage of protein biosynthesis, a ribosome decodes mRNA to produce a chain of amino acids (a polypeptide). This polypeptide later folds into an active protein in order to perform a biological function in the cell. (The Pfizer and Moderna vaccines work by delivering mRNA into the body which it uses to synthesize “spike” proteins that mimic those appearing on the surface of the SARS-CoV-2 virus. These synthetic spikes trigger an immune response that teach the immune system how to handle the actual virus.)

Here we describe a massive simplification of the problem of determining whether a polypeptide can fold into a stable protein. For us, a polypeptide is a string $s \in \{0, 1\}^k$. A folding is an embedding of the indices $1, \ldots, k$ into a two-dimensional $k \times k$ grid. Formally, a folding is a function $f : [k] \to [k] \times [k]$ with the following two properties:

1) Consecutive indices always map to adjacent grid cells. Formally, for every $i = 1, 2, \ldots, k - 1$, if $f(i) = (x, y)$ we have $f(i + 1) \in \{(x - 1, y), (x + 1, y), (x, y - 1), (x, y + 1)\}$, and

2) The function f is injective, i.e., it never maps two different indices to the same grid cell. Formally, for every $i \neq j$, we have $f(i) \neq f(j)$.

If you’ve ever played the game “snake”, all this is saying is that the sequence of cells $f(1), f(2), \ldots, f(k)$ form a snake that does not intersect itself.

It doesn’t really matter for this problem, but the 1’s correspond to hydrophobic amino acids and the 0’s correspond to hydrophilic ones.
(a) Is the function \(f : [4] \to [4] \times [4] \) defined by \(f(1) = (2, 2), f(2) = (2, 3), f(3) = (3, 3), f(4) = (3, 4) \) a valid folding? It may help to draw the picture and see if it forms a snake. (5 points)

(b) Let \(s \in \{0, 1\}^k \) be a polypeptide, \(f : [k] \to [k] \times [k] \) be a folding, and \(d \) be a natural number. We say \(f \) is a \(d \)-stable folding if there are at least \(d \) “hydrophobic bonds,” which are distinct pairs of indices \(i < j \) such that \(s_i = s_j = 1 \) and \(f(i) \) and \(f(j) \) are adjacent cells in the grid. For example, let \(s = 10110 \) and let \(f(1) = (1, 2), f(2) = (1, 3), f(3) = (2, 3), f(4) = (2, 2), f(5) = (2, 1) \). Explain why \(f \) is a 2-stable folding for \(s \). (5 points)

(c) Define the language \(SF = \{ \langle s, d \rangle \mid \text{there exists a } d \text{-stable folding of } s \} \). Prove that \(SF \) is in \(NP \) by showing that it can be decided by nondeterministic TM in polynomial time. Be sure to describe your NTM, explain why it is correct, and explain why it halts in poly-time on every computational branch. (15 points)

4. (NFA Acceptance) Let \(A_{\text{NFA}} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts string } w \} \). Prove that \(A_{\text{NFA}} \) is in \(NP \) by giving a polynomial-time verifier. Be sure to describe the structure of a valid certificate, describe your (deterministic) verifier, explain why the verifier is correct, and explain why the verifier runs in time polynomial in the input length. (15 points)

Hint: You can use without proof the fact that if an NFA \(N \) accepts \(w \), it can do so via a computational path consisting of \(O(|w|^2) \) transitions. You’re encouraged to think about how to prove this by the pigeonhole principle.

5. (Satisfiability)

(a) Let \(\varphi(x, y, z) = (x \land y) \lor (x \land \neg z) \). Is \(\varphi \) satisfiable? If so, exhibit a satisfying assignment. Otherwise, explain why it is not satisfiable. (5 points)

(b) Let \(\psi(x, y, z) = (x \lor y) \land (x \lor \neg y) \land (\neg x \lor z) \land (\neg x \lor \neg z) \). Is \(\psi \) satisfiable? If so, exhibit a satisfying assignment. Otherwise, explain why it is not satisfiable. (5 points)

(c) Define the language \(XSAT = \{ \langle \varphi_1, \varphi_2 \rangle \mid \text{there exists an assignment } x \text{ satisfying exactly one of } \varphi_1, \varphi_2 \} \). Show that \(XSAT \) is in \(NP \). You may either give a poly-time NTM or describe a poly-time verifier; it’s your choice. (10 points)