
CS 332: Theory of Computation Prof. Mark Bun
Boston University April 22, 2021

Homework 9 – Due Friday, April 30, 2021 at 11:59 PM

Reminder Collaboration is permitted, but you must write the solutions by yourself without as-
sistance, and be ready to explain them orally to the course staff if asked. You must also identify
your collaborators and write “Collaborators: none” if you worked by yourself. Getting solutions from
outside sources such as the Web or students not enrolled in the class is strictly forbidden.

Note You may use various generalizations of the Turing machine model we have seen in class, such as
TMs with two-way infinite tapes, stay-put, or multiple tapes. If you choose to use such a generalization,
state clearly and precisely what model you are using.

Problems There are 4 required problems.

1. (Poly-time Reductions) Assume P 6= NP. For each of the following, give a language (if it exists)
satisfying the stated property. Explain why your language satisfies the given property, or explain
why no such language can exist. (32 points)

(a) A ≤p SAT and A is not in NP.

(b) SAT ≤p B and B is not NP-hard.

(c) SAT ≤p C and C is not NP-complete. Hint: What if C is undecidable?

(d) D is both regular and NP-complete.

2. (NP-Completeness Mad-Libs) Given m nutrients and a menu of n food items supplying those
nutrients, you wish to determine whether there is a small set of food items that will supply you
with all of the nutrition you need. Specifically, each food item i = 1, . . . , n supplies you with
a set Si ⊆ [m] of nutrients. A valid diet is a collection T of foods that, taken together, sup-
ply you with all m nutrients: ∪i∈TSi = [m]. Define the language DIET = {〈S1, . . . , Sn, k〉 |
there exists a valid diet T ⊆ [n] of size |T | ≤ k}.

This problem will walk you through a proof that DIET is NP-complete.

(a) We’ll first argue that DIET ∈ NP by describing a poly-time verifier. A certificate is (i) .
On input 〈S1, . . . , Sn, k〉, the verifier checks that |T | ≤ k and that ∪i∈TSi = [m] and accepts if
and only if this is the case. (For brevity, we’re omitting the proof of correctness and runtime
analysis that should go here.)

Fill in the blank labeled (i) with a description of what a certificate for this problem should
look like. (6 points)

(b) Now we will argue that DIET is NP-hard by giving a reduction showing V ERTEX −
COV ER ≤p DIET . Recall that a vertex cover of a graph G is a set of vertices T such that
every edge in the graph is incident to at least one vertex in T . The language V ERTEX −
COV ER = {〈G, k〉 | G has a vertex cover of size at most k}.
In the reduction described below, fill in the blank labeled (ii) with a description of what the
algorithm computing the reduction should output. (7 points)

Your job is now done, but here are explanations of correctness and runtime for this reduction.

1

Algorithm: Vertex Cover to Diet Reduction

Input : 〈G, k〉 where G = (V,E) is a graph and k ∈ N
1. Relabel the vertices and edges of the graph so that V = [n] and E = [m].

2. For each i = 1, . . . , n:
Let Si = {j ∈ [m] | edge j is incident to vertex i}

3. Output (ii) .

Correctness: If 〈G, k〉 ∈ V ERTEX−COV ER, then there exists a set T of at most k vertices
such that every edge in the graph is incident to a member of T . After relabeling, that means
T is a collection of food items such that every nutrient in [m] appears in at least one of the
sets Si, so T is a valid diet of size at most k. Conversely, if there is a valid diet T of size at
most k in the instance of DIET produced, then T corresponds to a set of vertices such that
every edge in G is incident to a member of T , and hence 〈G, k〉 ∈ V ERTEX − COV ER.

Runtime: Suppose for concreteness that we are working with the adjacency list representation
of G. Inside the main loop of step 2, constructing each set Si takes time linear in the m, the
number of edges of the graph. So overall, the algorithm runs in time O(nm + log k) which is
polynomial in the description length of the input.

3. (Satisfiability) Let XSAT = {〈ϕ1, ϕ2〉 | there exists an assignment x satisfying exactly one of ϕ1, ϕ2}.
On Homework 8, Problem 5 you showed that XSAT ∈ NP. Show that SAT ≤p XSAT . Your
reduction should include an explanation of correctness and an explanation of why it runs in de-
terministc polynomial time. Finally, explain how you can conclude from this that XSAT is
NP-complete. (20 points)

4. (Boolean Roots) Let p(x1, . . . , xn) be an n-variate polynomial with integer coefficients. A boolean
root of p is point (b1, . . . , bn) ∈ {0, 1}n such that p(b1, . . . , bn) = 0. For example, (0, 1, 1) is
a boolean root of the polynomial 7x21 + 2x2x3 − 2x83. Define the language BROOT = {〈p〉 |
p is an integer polynomial that has at least one boolean root}.

(a) Explain why BROOT ∈ NP by either describing a poly-time NTM or a deterministic verifier.
In an effort to keep this assignment short, you do not need to analyze correctness or runtime
of your algorithm as long as those are reasonably clear. (10 points)

(b) Show that 3SAT ≤p BROOT and conclude that BROOT is NP-complete. (25 points)

Hint: First determine how to transform a single clause u ∨ v ∨ w into a polynomial p(u, v, w)
such that p(u, v, w) = 0 iff at least one of u, v, w is set to 1. Then create a polynomial q that
evaluates to 0 if and only if all of its inputs are 0. Finally, use q to combine the individual
polynomials that correspond to the clauses of your 3SAT instance.

5. (Bonus) In a directed graph, the indegree of a node is the number of incoming edges and the
outdegree of a node is the number of outgoing edges. Show that the following problem is NP-
complete. Given an undirected graph G and a subset S of the nodes in G, determine whether it
possible to convert G to a directed graph by assigning directions to each of its edges so that every
node in S has indegree 0 or outdegree 0, and all remaining nodes in G have indegree at least 1.

2

