BU CS 332 – Theory of Computation

Lecture 3:

- Deterministic Finite Automata
- Non-deterministic FAs

Reading:

Sipser Ch 1.1-1.2

Mark Bun February 1, 2021

Last Time

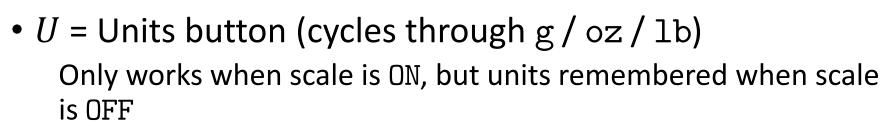
 Parts of a theory of computation: Model for machines, model for problems, theorems relating machines and problems

- Strings: Finite concatenations of symbols
- Languages: Sets L of strings
- Computational (decision) problem: Given a string x, is it in the language L?

Deterministic Finite Automata

A (Real-Life?) Example

- Example: Kitchen scale
- P = Power button (ON / OFF)

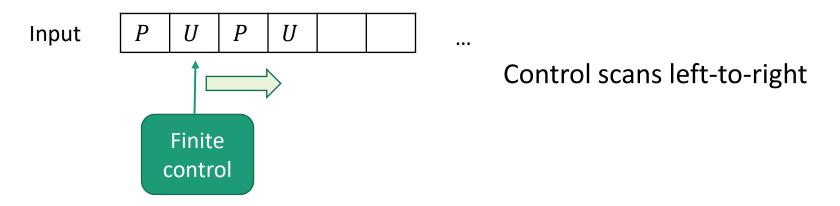


• Starts OFF in g mode

• A computational problem: Does a sequence of button presses in $\{P, U\}^*$ leave the scale ON in oz mode?

Machine Models

• <u>Finite Automata (FAs)</u>: Machine with a finite amount of unstructured memory



A DFA for the Kitchen Scale Problem

A DFA Recognizing Parity

The language recognized by a DFA is the set of inputs on which it ends in an "accept" state

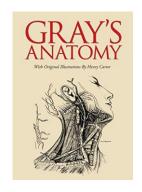
Parity: Given a string consisting of a's and b's, does it contain an even number of a's?

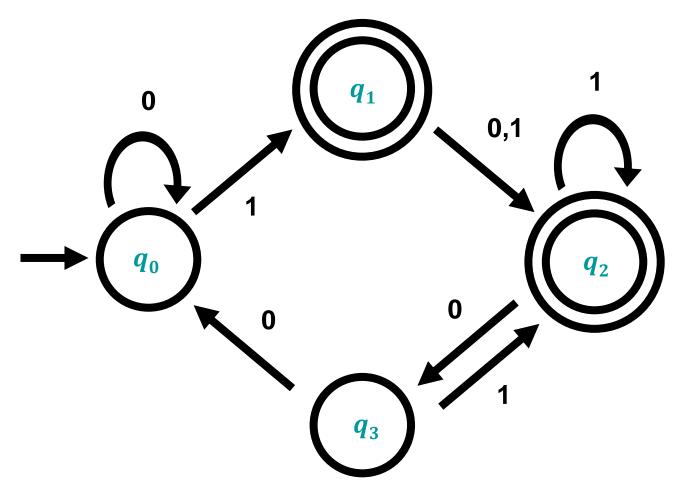
$$\Sigma = \{a, b\}$$
 $L = \{w \mid w \text{ contains an even number of } a's\}$

Which state is reached by the parity DFA on input aabab?

- a) "even"
- b) "odd"

Anatomy of a DFA





Some Tips for Thinking about DFAs

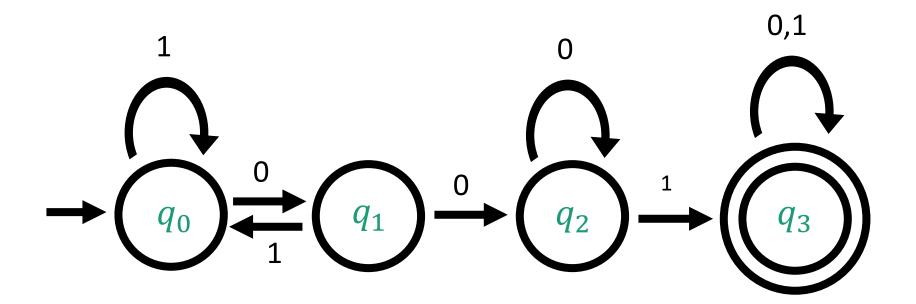
Given a DFA, what language does it recognize?

- Try experimenting with it on short strings. Do you notice any patterns?
- What kinds of inputs cause the DFA to get trapped in a state?

Given a language, construct a DFA recognizing it

- Imagine you are a machine, reading one symbol at a time, always prepared with an answer
- What is the essential information that you need to remember? Determines set of states.

What language does this DFA recognize?



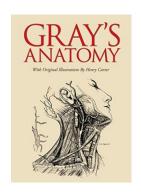
Practice!

- Lots of worked out examples in Sipser
- Tomorrow's discussion section
- Automata Tutor: https://automata-tutor.model.in.tum.de/

Formal Definition of a DFA

A finite automaton is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

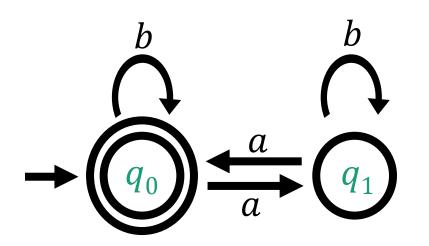
- Q is the set of states
- Σ is the alphabet
- $\delta: Q \times \Sigma \to Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states



A DFA for Parity

Parity: Given a string consisting of a's and b's, does it contain an even number of a's?

$$\Sigma = \{a, b\}$$
 $L = \{w \mid w \text{ contains an even number of } a's\}$



State set Q =

Alphabet Σ =

Transition function δ

δ	а	b
q_0		
q_{1}		

Start state q_0 Set of accept states F =

Formal Definition of DFA Computation

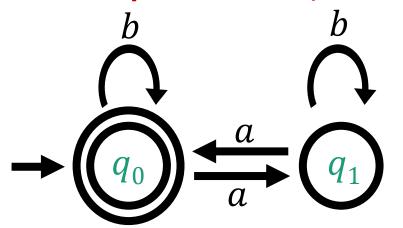
```
GUYTON AND HALL
TEXTBOOK OF MEDICAL
PHYSIOLOGY
THIRTEENTH EDITION
JOHN E. HALL
```

A DFA $M=(Q,\Sigma,\delta,q_0,F)$ accepts a string $w=w_1w_2\cdots w_n\in\Sigma^*$ (where each $w_i\in\Sigma$) if there exist $r_0,\ldots,r_n\in Q$ such that

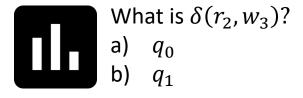
```
1. r_0 = q_0

2. \delta(r_i, w_{i+1}) = r_{i+1} for each i = 0, ..., n-1, and 3. r_n \in F
```

Example: Computing with the Parity DFA



Let w = abbaDoes M accept w?



A DFA $M = (Q, \Sigma, \delta, q_0, F)$ accepts a string $w = w_1 w_2 \cdots w_n \in \Sigma^*$ (where each $w_i \in \Sigma$) if there exist $r_0, \ldots, r_n \in Q$ such that

- 1. $r_0 = q_0$
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}$ for each i = 0, ..., n-1, and
- 3. $r_n \in F$

Regular Languages

Definition: A language is regular if it is recognized by a DFA

```
L = \{ w \in \{a, b\}^* \mid w \text{ has an even number of } a'\text{s } \} \text{ is regular}

L = \{ w \in \{0, 1\}^* \mid w \text{ contains } 001 \} \text{ is regular}
```

Many interesting programs recognize regular languages

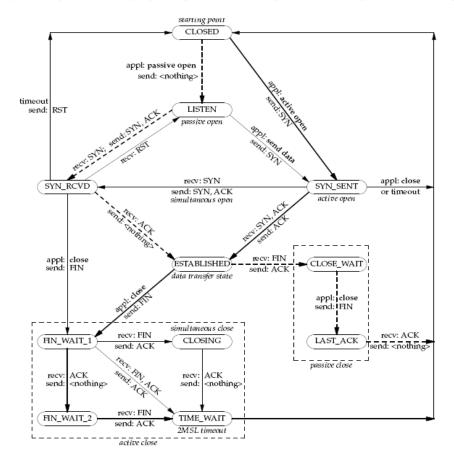
NETWORK PROTOCOLS

COMPILERS

GENETIC TESTING

ARITHMETIC

Internet Transmission Control Protocol



Let TCPS = $\{ w \mid w \text{ is a complete TCP Session} \}$ Theorem. TCPS is regular

Compilers

Comments:

```
Are delimited by /* */
Cannot have nested /* */
Must be closed by */
*/ is illegal outside a comment
```

COMMENTS = {strings over {0,1, /, *} with legal comments}

Theorem. **COMMENTS** is regular.

Genetic Testing

DNA sequences are strings over the alphabet $\{A, C, G, T\}$.

A gene g is a special substring over this alphabet.

A genetic test searches a DNA sequence for a gene.

GENETICTEST_g = {strings over $\{A, C, G, T\}$ containing g as a substring}

Theorem. GENETICTEST $_g$ is regular for every gene g.

Arithmetic

LET
$$\Sigma = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$$

- A string over Σ has three ROWS (ROW₁, ROW₂, ROW₃)
- Each ROW $b_0b_1b_2\dots b_N$ represents the integer

$$b_0 + 2b_1 + ... + 2^N b_N$$

• Let ADD = $\{S \in \Sigma^* \mid ROW_1 + ROW_2 = ROW_3\}$

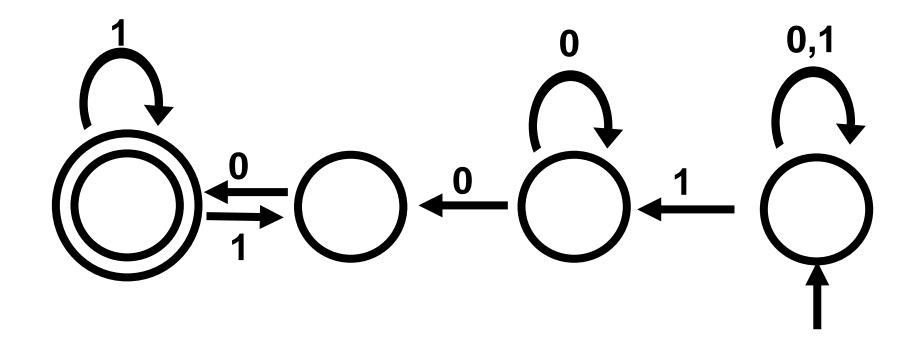
Theorem. ADD is regular.

Nondeterministic Finite Automata

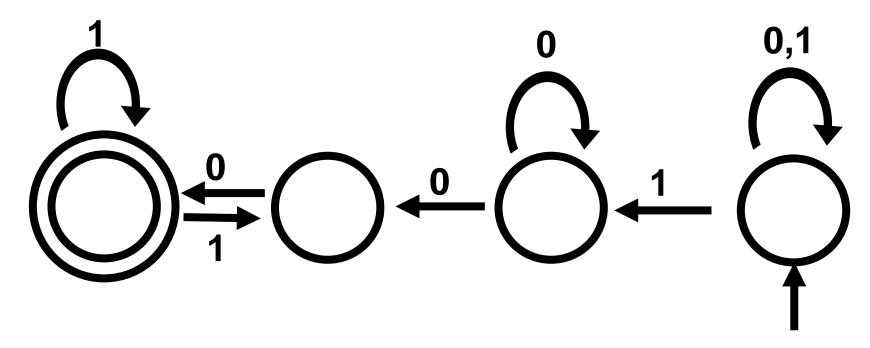
In a DFA, the machine is always in exactly one state upon reading each input symbol

In a nondeterministic FA, the machine can try out many different ways of reading the same string

- Next symbol may cause an NFA to "branch" into multiple possible computations
- Next symbol may cause NFA's computation to fail to enter any state at all

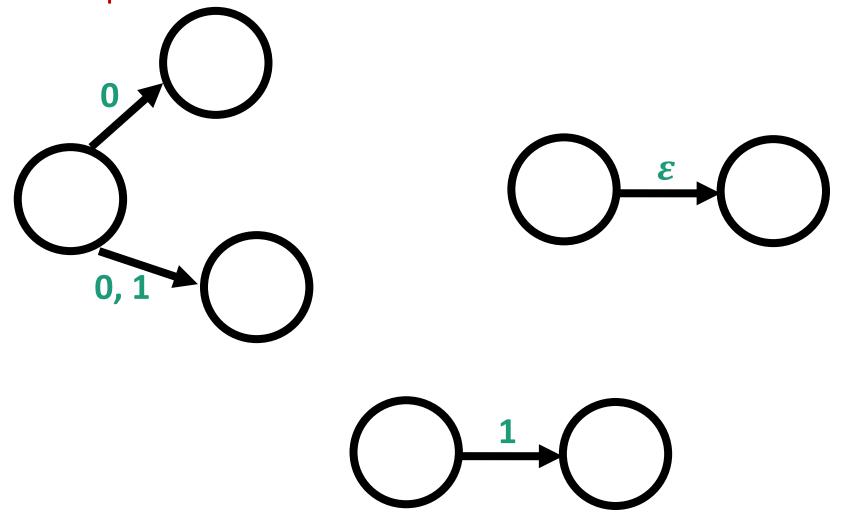


A Nondeterministic Finite Automaton (NFA) accepts if there exists a way to make it reach an accept state.

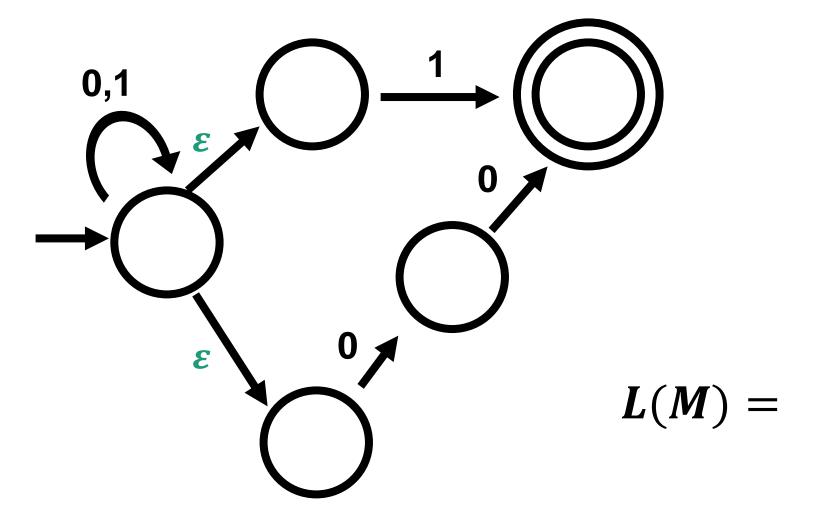


Example: Does this NFA accept the string 1100?

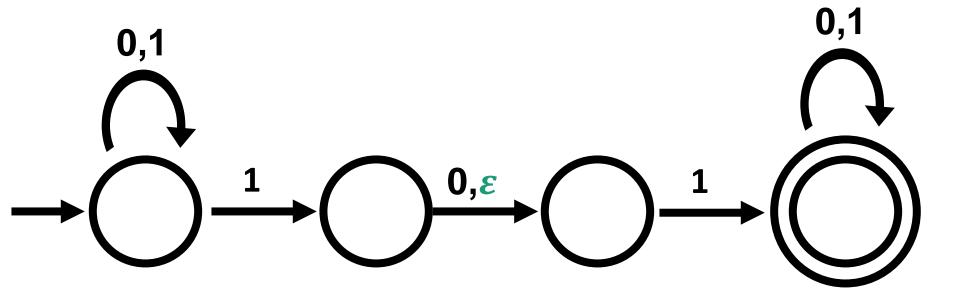
Some special transitions



Example



Example



Now You Try!



What is the language of this NFA? (over alphabet $\{0\}$)

- a) $\{0^k \mid k \text{ is a multiple of 2}\}$
- b) $\{0^k \mid k \text{ is a multiple of 3}\}$
- c) $\{0^k \mid k \text{ is a multiple of 6}\}$
- d) $\{0^k | k \text{ is a multiple of 2 or a multiple of 3}\}$

Formal Definition of a NFA

An NFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

Q is the set of states

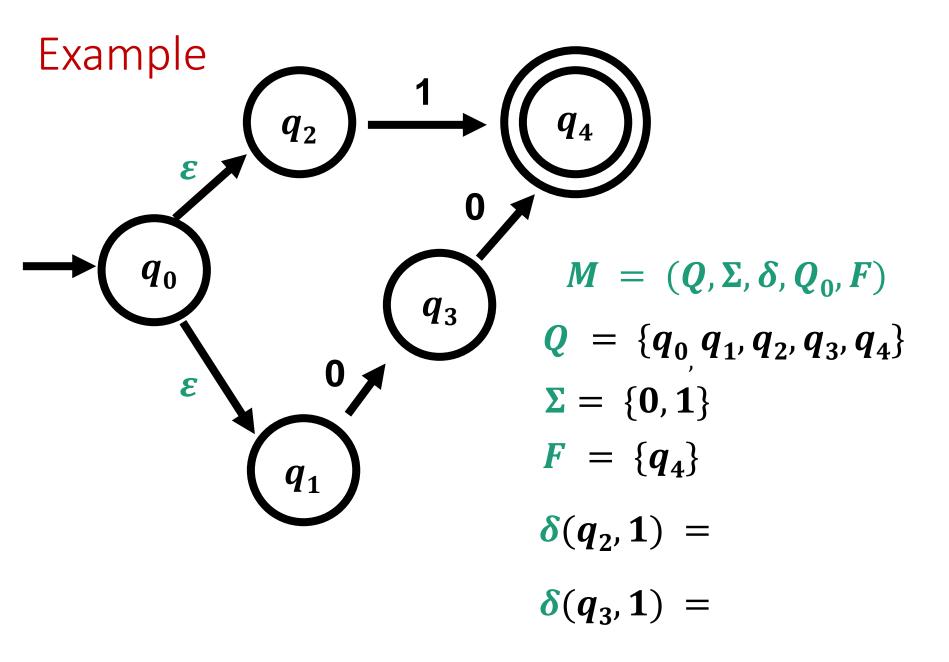
Σ is the alphabet

 $\delta: Q \times \Sigma_{\varepsilon} \to P(Q)$ is the transition function

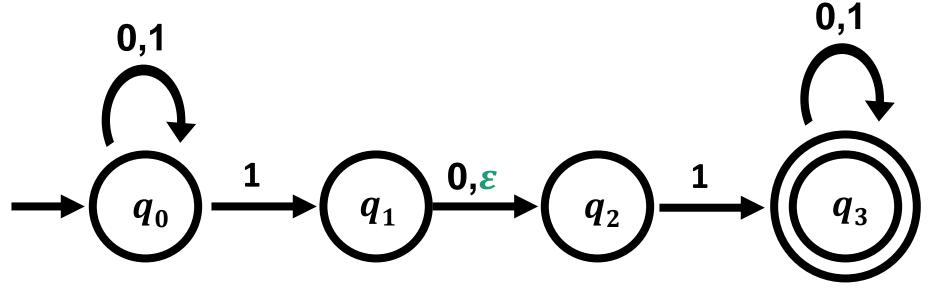
 $q_0 \in Q$ is the start state

 $F \subseteq Q$ is the set of accept states

M accepts a string w if there exists a path from q_0 to an accept state that can be followed by reading w.



Example



$$N = (Q, \Sigma, \delta, q_0, F)$$

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{0, 1\}$$

$$F = \{q_3\}$$

$$\delta(q_0, 0) =$$

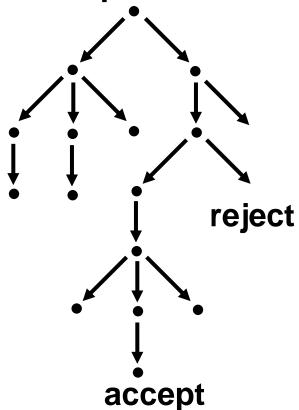
$$\delta(q_0, 1) =$$

$$\delta(q_1, \varepsilon) =$$

$$\delta(q_2, 0) =$$

Deterministic Computation accept or reject

Nondeterministic Computation



Ways to think about nondeterminism

- (restricted) parallel computation
- tree of possible computations
- guessing and verifying the "right" choice

Why study NFAs?

 Not really a realistic model of computation: Real computing devices can't actually try many possibilities in parallel

But:

- Useful tool for understanding power of DFAs/regular languages
- NFAs can be simpler than DFAs
- Lets us study "nondeterminism" as a resource (cf. P vs. NP)