Lecture 5:

• Closure Properties
• Regular Expressions

Reading:
Sipser Ch 1.2-1.3

Mark Bun
February 8, 2021
Last Time

• NFAs vs. DFAs
 • Subset construction: NFA -> DFA

• Intro to closure properties of regular languages
Closure Properties
Operations on languages

Let $A, B \subseteq \Sigma^*$ be languages. Define

Regular Operations

\begin{align*}
\text{Union: } A \cup B &= \{ a \mid a \in A \text{ or } a \in B \} \\
\text{Concatenation: } A \circ B &= \{ ab \mid a \in A, b \in B \} \\
\text{Star: } A^* &= \{ a_1a_2\ldots a_n \mid n \geq 0 \text{ and } a_i \in A \} \\
\text{Complement: } \overline{A} &= \{ a \mid a \notin A \} \\
\text{Intersection: } A \cap B &= \{ a \mid a \in A \text{ and } a \in B \} \\
\text{Reverse: } A^R &= \{ a_1a_2\ldots a_n \mid a_n\ldots a_1 \in A \}
\end{align*}

Theorem: The class of regular languages is **closed** under all six of these operations
Proving Closure Properties
Complement

Complement: $\overline{A} = \{ w | w \notin A \}$

Theorem: If A is regular, then \overline{A} is also regular

Proof idea:

- A regular $\implies \exists$ a DFA M recognizing A

- $\overset{w}{\Rightarrow}: \exists$ DFA M' recognizes \overline{A} $\implies \overline{A}$ is regular

M' obtained by swapping accept/reject states of M
Complement, Formally

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing a language A. Which of the following represents a DFA recognizing \bar{A}?

a) $(F, \Sigma, \delta, q_0, Q)$

b) $(Q, \Sigma, \delta, q_0, Q \setminus F)$, where $Q \setminus F$ is the set of states in Q that are not in F

c) $(Q, \Sigma, \delta', q_0, F)$ where $\delta'(q, s) = p$ such that $\delta(p, s) = q$

d) None of the above
Closure under Concatenation

Concatenation: \(A \circ B = \{ xy \mid x \in A, y \in B \} \)

Theorem. If \(A \) and \(B \) are regular, \(A \circ B \) is also regular.

Proof idea: Given DFAs \(M_A \) and \(M_B \), construct NFA by

- Connecting all accept states in \(M_A \) to the start state in \(M_B \).
- Make all states in \(M_A \) non-accepting.

\[L(M_A) = A \quad \text{and} \quad L(M_B) = B \]
Closure under Concatenation

Concatenation: \(A \circ B = \{ xy | x \in A, y \in B \} \)

Theorem. If \(A \) and \(B \) are regular, \(A \circ B \) is also regular.

Proof idea: Given DFAs \(M_A \) and \(M_B \), construct NFA by
- Connecting all accept states in \(M_A \) to the start state in \(M_B \).
- Make all states in \(M_A \) non-accepting.

\[L(M_A) = A \quad \text{and} \quad L(M_B) = B \]
Given DFAs M_A recognizing A and M_B recognizing B, what does the following NFA recognize?
Closure under Star

Star: \(A^* = \{ a_1 a_2 \ldots a_n \mid n \geq 0 \text{ and } a_i \in A \} \)

Theorem. If \(A \) is regular, \(A^* \) is also regular.
Closure under Star

Star: $A^* = \{ a_1 a_2 ... a_n \mid n \geq 0 \text{ and } a_i \in A \}$

Theorem. If A is regular, A^* is also regular.
On proving your own closure properties

You’ll have homework/test problems of the form “show that the regular languages are closed under some operation”

\[A = \text{reg. lang } A, B, \ \text{op}(A, B) \] is regular

What would Sipser do?

- Give the “proof idea”: Explain how to take machine(s) recognizing regular language(s) and create a new machine
- Explain in a few sentences why the construction works
- Give a formal description of the construction
- No need to formally prove that the construction works
Regular Expressions
Regular Expressions

• A different way of describing regular languages
• A regular expression expresses a (possibly complex) language by combining simple languages using the regular operations

“Simple” languages: \emptyset, $\{\varepsilon\}$, $\{a\}$ for some $a \in \Sigma$

Regular operations:

 Union: $A \cup B$

 Concatenation: $A \circ B = \{ab \mid a \in A, b \in B\}$

 Star: $A^* = \{a_1a_2...a_n \mid n \geq 0 \text{ and } a_i \in A\}$
Regular Expressions – Syntax

A regular expression R is defined recursively using the following rules:

1. ε, \emptyset, and a are regular expressions for every $a \in \Sigma$

2. If R_1 and R_2 are regular expressions, then so are

 $(R_1 \cup R_2)$, $(R_1 \circ R_2)$, and (R_1^*)

Examples: (over $\Sigma = \{a, b, c\}$)

 $(a \circ b)$, $(((a \circ (b^*)) \circ c) \cup (((a^*) \circ b))\ast)$, $(\emptyset\ast)$
Regular Expressions – Semantics

$L(R) = \text{the language a regular expression describes}$

1. $L(\emptyset) = \emptyset$
2. $L(\epsilon) = \{\epsilon\}$
3. $L(a) = \{a\}$ for every $a \in \Sigma$
4. $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$
5. $L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$
6. $L((R_1^*) = (L(R_1))^*$

Example: $L(((a^*) \circ (b^*)) = L^*$

$L^* = \{a, a_2...a_n | n \geq 0, a_i \in L \}$

$= \{\epsilon^* \cup \epsilon \cup \text{Lol} \cup \text{Lolol} \cup \text{Lololol} \cup ... \}$
Simplifying Notation

• Omit • symbol: \((ab) = (a \circ b) \)

• Omit many parentheses, since union and concatenation are associative:

\[
(a \cup b \cup c) = (a \cup (b \cup c)) = ((a \cup b) \cup c)
\]

• Order of operations: Evaluate star, then concatenation, then union

\[
ab^* \cup c = (a(b^*)) \cup c
\]
Examples

Let $\Sigma = \{0, 1\}$

1. \(\{ w \mid w \text{ contains exactly one } 1 \} \)
 \[
 0^* 1 0^*
 \]

2. \(\{ w \mid w \text{ has length at least 3 and its third symbol is } 0 \} \)
 \[
 (001) (001) 0 (001)^*
 \]

3. \(\{ w \mid \text{every odd position of } w \text{ is } 1 \} \)
 \[
 (1(001))^* 0 (1(001))^*
 \]
 \(w_1, w_2, w_3, \ldots \)
Syntactic Sugar

• For alphabet Σ, the regex Σ represents $L(\Sigma) = \Sigma$

• For regex R, the regex $R^+ = RR^*$

$$L(R^+) = L(R) \cup (L(R) \circ L(R)) \cup (L(R) \circ L(R) \circ L(R)) \ldots$$
Regexes in the Real World

grep = globally search for a regular expression and print matching lines

Not captured by regular expressions: Backreferences
Equivalence of Regular Expressions, NFAs, and DFAs
Regular Expressions Describe Regular Languages

Theorem: A language \(A \) is regular if and only if it is described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression
Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA
Proof: Induction on size of a regex

Base cases:

\[R = \emptyset \]

\[R = \epsilon \]

\[R = a \]
Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

What should the inductive hypothesis be?

a) Suppose **some** regular expression of length k can be converted to an NFA

b) Suppose **every** regular expression of length k can be converted to an NFA

c) Suppose **every** regular expression of length **at most** k can be converted to an NFA

d) None of the above
Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

Inductive step:

\[R = (R_1 \cup R_2) \]

\[R = (R_1 R_2) \]

\[R = (R_1^*) \]
Example

Convert \((1(0 \cup 1))^*\) to an NFA
\[\exists 0, 1, 11^* = \exists E, 01, 11, 0101, 01111, 1101, 11111, \ldots \]

0 copies 1 copy 2 copies

010101, 010111, \ldots

3 copies \ldots 3

\[R^+ \xrightarrow{\text{means}} R \times R^* \]

\[n = \exists ab, c^3 \quad L(R^+) = L(R) \circ L(R^*) = \exists \omega_1, \omega_2, \ldots, \omega_n \mid n \geq 3 \]

\[= \exists ab, c^3 \circ \exists E, ab, c, abab, abc, cab, cc, \ldots \]

\[= \exists ab, abab, abc, abab, ababc, ababab, \ldots \]