BU CS 332 - Theory of Computation

Lecture 5:

- Closure Properties
- Regular Expressions

Reading:
Sipser Ch 1.2-1.3

Mark Bun
February 8, 2021

Last Time

- NFAs vs. DFAs
- Subset construction: NFA -> DFA
- Intro to closure properties of regular languages

Closure Properties

Operations on languages

 Let $A, B \subseteq \Sigma^{*}$ be languages. Define| Regular | |
| :---: | :---: |
| Operations | Concatenation: $A \circ B=\{a b \mid a \in A, b \in B\}$ |

Star: $A^{*}=\left\{a_{1} a_{2} \ldots a_{n} \mid n \geq 0\right.$ and $\left.a_{i} \in A\right\}$
Complement: \bar{A}
Intersection: $A \cap B$
Reverse: $A^{R}=\left\{a_{1} a_{2} \ldots a_{n} \mid a_{n} \ldots a_{1} \in A\right\}$

Theorem: The class of regular languages is closed under all six of these operations

Proving Closure Properties

Complement

Complement: $\bar{A}=\{w \mid w \notin A\}$
Theorem: If A is regular, then \bar{A} is also regular Proof idea:

Complement, Formally

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA recognizing a language A. Which of the following represents a DFA recognizing \bar{A} ?
a) $\left(F, \Sigma, \delta, q_{0}, Q\right)$
b) $\left(Q, \Sigma, \delta, q_{0}, Q \backslash F\right)$, where $Q \backslash F$ is the set of states in Q that are not in F
c) $\left(Q, \Sigma, \delta^{\prime}, q_{0}, F\right)$ where $\delta^{\prime}(q, s)=p$ such that $\delta(p, s)=q$
d) None of the above

Closure under Concatenation

Concatenation: $A \circ B=\{x y \mid x \in A, y \in B\}$
Theorem. If A and B are regular, $A \circ B$ is also regular.
Proof idea: Given DFAs M_{A} and M_{B}, construct NFA by

- Connecting all accept states in M_{A} to the start state in M_{B}.
- Make all states in M_{A} non-accepting.

Closure under Concatenation

Concatenation: $A \circ B=\{x y \mid x \in A, y \in B\}$
Theorem. If A and B are regular, $A \circ B$ is also regular.
Proof idea: Given DFAs M_{A} and M_{B}, construct NFA by

- Connecting all accept states in M_{A} to the start state in M_{B}.
- Make all states in M_{A} non-accepting.

A Mystery Construction

Given DFAs M_{A} recognizing A and M_{B} recognizing B, what does the following NFA recognize?

Closure under Star

Star: $A^{*}=\left\{a_{1} a_{2} \ldots a_{n} \mid n \geq 0\right.$ and $\left.a_{i} \in A\right\}$

Theorem. If A is regular, A^{*} is also regular.

Closure under Star

Star: $A^{*}=\left\{a_{1} a_{2} \ldots a_{n} \mid n \geq 0\right.$ and $\left.a_{i} \in A\right\}$

Theorem. If A is regular, A^{*} is also regular.

On proving your own closure properties

You'll have homework/test problems of the form "show that the regular languages are closed under some operation"

What would Sipser do?

- Give the "proof idea": Explain how to take machine(s) recognizing regular language(s) and create a new machine
- Explain in a few sentences why the construction works
- Give a formal description of the construction
- No need to formally prove that the construction works

Regular Expressions

Regular Expressions

- A different way of describing regular languages
- A regular expression expresses a (possibly complex) language by combining simple languages using the regular operations
"Simple" languages: $\emptyset,\{\varepsilon\},\{a\}$ for some $a \in \Sigma$
Regular operations:
Union: $A \cup B$
Concatenation: $A \circ B=\{a b \mid a \in A, b \in B\}$
Star: $A^{*}=\left\{a_{1} a_{2} \ldots a_{n} \mid n \geq 0\right.$ and $\left.a_{i} \in A\right\}$

Regular Expressions - Syntax
A regular expression R is defined recursively using the following rules:

1. ε, \emptyset, and a are regular expressions for every $a \in \Sigma$
2. If R_{1} and R_{2} are regular expressions, then so are $\left(R_{1} \cup R_{2}\right),\left(R_{1} \circ R_{2}\right)$, and $\left(R_{1}^{*}\right)$

Examples: (over $\Sigma=\{a, b, c\})$
$(a \circ b) \quad\left(\left(\left(\left(a \circ\left(b^{*}\right)\right) \circ c\right) \cup\left(\left(\left(a^{*}\right) \circ b\right)\right)^{*}\right)\right)$

Regular Expressions - Semantics
$L(R)=$ the language a regular expression describes

1. $L(\varnothing)=\varnothing$
2. $L(\varepsilon)=\{\varepsilon\}$
3. $L(a)=\{a\}$ for every $a \in \Sigma$
4. $L\left(\left(R_{1} \cup R_{2}\right)\right)=L\left(R_{1}\right) \cup L\left(R_{2}\right)$
5. $L\left(\left(R_{1} \circ R_{2}\right)\right)=L\left(R_{1}\right) \circ L\left(R_{2}\right)$
6. $L\left(\left(R_{1}^{*}\right)\right)=\left(L\left(R_{1}\right)\right)^{*}$

Example: $L\left(\left(\left(a^{*}\right) \circ\left(b^{*}\right)\right)\right)=$

Simplifying Notation

- Omit \circ symbol: $(a b)=(a \circ b)$
- Omit many parentheses, since union and concatenation are associative:

$$
(a \cup b \cup c)=(a \cup(b \cup c))=((a \cup b) \cup c)
$$

- Order of operations: Evaluate star, then concatenation, then union

$$
a b^{*} \cup c=\left(a\left(b^{*}\right)\right) \cup c
$$

Examples

Let $\Sigma=\{0,1\}$

1. $\{w \mid w$ contains exactly one 1$\}$
2. $\{w \mid w$ has length at least 3 and its third symbol is 0$\}$
3. $\{w$ levery odd position of w is 1$\}$

Syntactic Sugar

- For alphabet Σ, the regex Σ represents $L(\Sigma)=\Sigma$
- For regex R, the regex $R^{+}=R R^{*}$

Regexes in the Real World

grep = globally search for a regular expression and print matching lines

```
guru99@guru99-VirtualBox:~$ cat sample|grep "a\+t"
bat
eat
guru99@guru99-VirtualBox:~$
```

Not captured by regular expressions: Backreferences

Equivalence of Regular Expressions, NFAs, and DFAs

Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA Proof: Induction on size of a regex

Base cases:

$$
\begin{aligned}
& R=\varnothing \\
& R=\varepsilon \\
& R=a
\end{aligned}
$$

Regular expression -> NFA
Theorem 1: Every regex has an equivalent NFA
Proof: Induction on size of a regex

.

What should the inductive hypothesis be?
a) Suppose some regular expression of length k can be converted to an NFA
b) Suppose every regular expression of length k can be converted to an NFA
c) Suppose every regular expression of length at most k can be converted to an NFA
d) None of the above

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA Proof: Induction on size of a regex

Inductive step:

$$
\begin{aligned}
& R=\left(R_{1} \cup R_{2}\right) \\
& R=\left(R_{1} R_{2}\right) \\
& R=\left(R_{1}^{*}\right)
\end{aligned}
$$

Example

Convert $(1(0 \cup 1))^{*}$ to an NFA

