BU CS 332 – Theory of Computation

Lecture 6:
 • Regexes = NFAs
 • Non-regular languages

Reading:
 Sipser Ch 1.3
 “Myhill-Nerode” note
 Sipser Ch 1.4 (optional)

Mark Bun
February 10, 2021
Regular Expressions – Syntax

A regular expression R is defined recursively using the following rules:

1. ε, \emptyset, and a are regular expressions for every $a \in \Sigma$

2. If R_1 and R_2 are regular expressions, then so are $(R_1 \cup R_2)$, $(R_1 \circ R_2)$, and (R_1^*)

Examples: (over $\Sigma = \{a, b, c\}$) (with simplified notation)

- ab
- $ab^*c \cup (a^*b)^*$
- \emptyset
Regular Expressions – Semantics

$L(R) = \text{the language a regular expression describes}$

1. $L(\emptyset) = \emptyset$
2. $L(\epsilon) = \{\epsilon\}$
3. $L(a) = \{a\}$ for every $a \in \Sigma$
4. $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$
5. $L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$
6. $L((R_1^*)) = (L(R_1))^*$

Example: $L(a^*b^*) = \{a^m b^n \mid m, n \geq 0\}$
Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression
Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

Base cases:

\[R = \emptyset \]

\[R = \varepsilon \]

\[R = a \]
Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

Inductive step:

\[R = (R_1 \cup R_2) \]

\[R = (R_1 R_2) \]

\[R = (R_1^*) \]
Example

Convert \((1(0 \cup 1))^*\) to an NFA
Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression
NFA -> Regular expression

Theorem 2: Every NFA has an equivalent regex

Proof idea: Simplify NFA by “ripping out” states one at a time and replacing with regexes

Diagram: A NFA with states and transitions labeled with symbols.
Generalized NFAs

- Every transition is labeled by a regex
- One start state with only outgoing transitions
- Only one accept state with only incoming transitions
- Start state and accept state are distinct
Generalized NFA Example

\[R(q_s, q) = \]
\[R(q_a, q) = \]
\[R(q, q_s) = \]
Which of these strings is accepted?

Which of the following strings is accepted by this GNFA?

a) aaa

b) $aabb$

c) bbb

d) bba
NFA -> Regular expression

- **NFA**: k states
- **GNFA**: $k + 2$ states
- **GNFA**: $k + 1$ states
- **GNFA**: 2 states
- **Regex**
NFA -> GNFA

- Add a new start state with no incoming arrows.
- Make a unique accept state with no outgoing arrows.
GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state.
GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state.
GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state
GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state
Non-Regular Languages
Motivating Questions

• We’ve seen techniques for showing that languages are regular

• How can we tell if we’ve found the smallest DFA recognizing a language?

• Are all languages regular? How can we prove that a language is not regular?
An Example

\[A = \{ w \in \{0, 1\}^* \mid w \text{ ends with } 01 \} \]

Claim: Every DFA recognizing \(A \) needs at least 3 states

Proof: Let \(M \) be any DFA recognizing \(A \). Consider running \(M \) on each of \(x = \varepsilon, y = 0, w = 01 \)
A General Technique

Definition: Strings x and y are distinguishable by L if there exists z such that exactly one of xz or yz is in L.

Ex. $x = \varepsilon$, $y = 0$

Definition: A set of strings S is pairwise distinguishable by L if every pair of distinct strings $x, y \in S$ is distinguishable by L.

Ex. $S = \{\varepsilon, 0, 01\}$
A General Technique

Theorem: If S is pairwise distinguishable by L, then every DFA recognizing L needs at least $|S|$ states

Proof: Let M be a DFA with $< |S|$ states. By the pigeonhole principle, there are $x, y \in S$ such that M ends up in same state on x and y
Back to Our Example

\[A = \{ w \in \{0, 1\}^* \mid w \text{ ends with } 01 \} \]

Theorem: If \(S \) is pairwise distinguishable by \(L \), then every DFA recognizing \(L \) needs at least \(|S| \) states

\[S = \{ \varepsilon, 0, 01 \} \]
Another Example

\[B = \{ w \in \{0, 1\}^* \mid |w| = 2 \} \]

Theorem: If \(S \) is pairwise distinguishable by \(L \), then every DFA recognizing \(L \) needs at least \(|S| \) states

\[S = \{ \} \]
Which of the following is a distinguishing extension for \(x = 0 \) and \(y = 00 \) for language \(B = \{ w \in \{0, 1\}^* \mid |w| = 2 \} \)?

a) \(z = \varepsilon \)

b) \(z = 0 \)

c) \(z = 1 \)

d) \(z = 00 \)
Non-Regularity

Theorem: If S is pairwise distinguishable by L, then every DFA recognizing L needs at least $|S|$ states

Corollary: If S is an infinite set that is pairwise distinguishable by L, then no DFA recognizes L
The Classic Example

Theorem: \(A = \{0^n1^n \mid n \geq 0\} \) is not regular

Proof: Construct an infinite pairwise distinguishable set