BU CS 332 – Theory of Computation

Lecture 10:

- Turing Machines
- TM Variants and Closure Properties

Reading:

Sipser Ch 3.1-3.3

Mark Bun February 24, 2021

The Basic Turing Machine (TM)

- Input is written on an infinitely long tape
- Head can both read and write, and move in both directions
- Computation halts as soon as control reaches "accept" or "reject" state

Example q_0 q_0

Formal Definition of a TM

A TM is a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$

- Q is a finite set of states
- ∑ is the input alphabet (does not include □)
- Γ is the tape alphabet (contains \sqcup and Σ)
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the transition function $\{S(P, \alpha) = \{q, b\} \in \mathbb{N}\}$ novement (left or right)
- $q_0 \in Q$ is the start state
- $q_{\text{accept}} \in Q$ is the accept state
- $q_{\text{reject}} \in Q$ is the reject state $(q_{\text{reject}} \neq q_{\text{accept}})$

Configuration of a TM: Formally

A configuration is a string uqv where $q \in Q$ and $u, v \in \Gamma^*$

- Tape contents = uv (followed by blanks \sqcup)
- Current state = q
- Tape head on first symbol of v

How a TM Computes

9 6-76, R

Start configuration: $q_0 w$

Stort state

One step of computation:

- $ua \ q \ bv$ yields $uac \ q' \ v$ if $\delta(q,b) = (q',c,R)'$
- $ua\ q\ bv$ yields $u\ q'\ acv$ if $\delta(q,b)=(q',c,L)$
- If we are at the left end of the tape in configuration q bv, what configuration do we reach if $\delta(q,b) = (q',c,L)$?

$$qbv$$
 blv
 blv
 $lblv$
 $lext$ instactor: $8(q,b) = (q',c,L)$
 lev
 low l

How a TM Computes

Start configuration: q_0w

One step of computation:

- $ua \ q \ bv$ yields $uac \ q' \ v$ if $\delta(q,b) = (q',c,R)$
- $ua \ q \ bv$ yields $u \ q' \ acv$ if $\delta(q,b) = (q',c,L)$
- q bv yields q' cv if $\delta(q, b) = (q', c, L)$

Accepting configuration: $q = q_{accept}$

Rejecting configuration: $q = q_{reject}$

How a TM Computes

M accepts input w if there is a sequence of configurations C_1, \ldots, C_k such that: $C_1 = C_1 = C_2 = C_1$

- $C_1 = q_0 w$ TM starts in Start (an fig
- C_i yields C_{i+1} for every i Transition takes TM from C_i to C_{i+1}
- C_k is an accepting configuration in halfs and accepts

L(M) = the set of all strings w which M accepts A is Turing-recognizable if A = L(M) for some TM M:

- $w \in A \implies M$ halts on w in state q_{accept}
- $w \notin A \implies M$ halts on w in state q_{reject} OR M runs forever on w

Recognizers vs. Deciders

L(M) = the set of all strings w which M accepts

A is Turing-recognizable if A = L(M) for some TM M:

- $w \in A \implies M$ halts on w in state q_{accept}
- $w \notin A \implies M$ halts on w in state q_{reject} OR M runs forever on w

A is (Turing-)decidable if A = L(M) for some TM M which halts on every input

- $w \in A \implies M$ halts on w in state q_{accept}
- $w \notin A \implies M$ halts on w in state q_{reject} (1) in fine looping)

Recognizers vs. Deciders

Which of the following is true about the relationship between decidable and recognizable languages?

- a) The decidable languages are a subset of the recognizable languages
- b) The recognizable languages are a subset of the decidable languages
- c) They are incomparable: There might be decidable languages which are not recognizable and vice versa

Example: Arithmetic on a TM

The following TM decides MULT = $\{a^ib^jc^k \mid i \times j = k\}$:

On input string w: We 3a,b, (3^*)

- 1. Check w is formatted correctly
- 2. For each a appearing in w:
- 3. For each b appearing in w:
- 4. Attempt to cross off a c. If none exist, reject.
- 5. If all c's are crossed off, accept. Else, reject.

Example: Arithmetic on a TM

The following TM decides MULT = $\{a^ib^jc^k \mid i \times j = k\}$: On input string w:

- 1. Scan the input from left to right to determine whether it is a member of $L(a^*b^*c^*)$ $\leftarrow carbox{ar} \rightarrow \sqrt{0}$ $\rightarrow C$
- 2. Return head to left end of tape
- 3. Cross off an a if one exists. Scan right until a b occurs. Shuttle between b's and c's crossing off one of each until all b's are gone. Reject if all c's are gone but some b's remain.
 - 4. Restore crossed off b's. If any a's remain, repeat step 3.
 - 5. If all c's are crossed off, accept. Else, reject.

Back to Hilbert's Tenth Problem

Computational Problem: Given a Diophantine equation, does it have a solution over the integers?

$$L = \frac{2}{3} p(z_1, ..., z_m) \mid P : an integer psynomial \exists z_1, ..., z_m \in Z p(z_1, ..., z_m) = 0$$

• *L* is Turing-recognizable

Gimple care:
$$L_2 = \frac{2}{3} p(x,y) | \exists x,y p(x,y) = 0\frac{2}{3}$$

Try out (in a slightly clear way) all possible $(x,y) \in \mathbb{Z}^2$

and see it $p(x,y) = 0$ "doetailing"

Try $p(0,0)$. If $= 0$, accept

Try $p(0,-1)$. If $= 0$, accept

Try $p(0,-1)$. If $= 0$, accept

 $= \frac{1}{2} \frac{1}{3} \frac{$

• L is **not** decidable (1949-70)

TM Variants

How Robust is the TM Model?

Does changing the model result in different languages being recognizable / decidable?

So far we've seen...

- We can require that NFAs have a single accept state
- Adding nondeterminism does not change the languages recognized by finite automata
- Bonus problem on test: Allowing DFAs to have multiple passes over their input does not increase their power

Turing machines have an astonishing level of robustness

TMs are equivalent to...

- TMs with "stay put"
- TMs with 2-way infinite tapes
- Multi-tape TMs
- Nondeterministic TMs
- Random access TMs
- Enumerators
- Finite automata with access to an unbounded queue
- Primitive recursive functions

and og of recoy larg. from 1- calculus Cellular automata

Extensions that do not increase the power of the TM model

 TMs that are allowed to "stay put" instead of moving left or right

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$$
"stay put"

How would you show that TMs with stay put are no more powerful than ordinary TMs?

Extensions that do not increase the power of the TM model

 TMs that are allowed to "stay put" instead of moving left or right

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$$
This is given in power! Show that Show that Proof that TMs with "stay put" are no more powerful: be consided

Simulation: Convert any TM M with "stay put" into an $\sqrt[3]{4}$ equivalent TM M' without

Independation level

Replace every "stay put" instruction in M with a move right instruction, followed by a move left instruction in M'

If
$$\delta(\rho, \alpha) = (q, b, s)$$
 E replace this $J \rightarrow \delta(\rho, \alpha) = (q', b, R)$ in M $\delta(q', x) = (q, x, L)$ $\delta(q', x) = (q, x, L)$

Extensions that do not increase the power of the TM model

TMs with a 2-way infinite tape, unbounded left to right

Proof that TMs with 2-way infinite tapes are no more powerful:

Simulation: Convert any TM M with 2-way infinite tape into a 1-way infinite TM M' with a "two-track tape"

Formalizing the Simulation

$$M' = (Q', \Sigma, \Gamma', \delta', q'_0, q'_{accept}, q'_{reject})$$

New tape alphabet: $\Gamma' = (\Gamma \times \Gamma) \cup \{\$\}$

New state set: $Q' = Q \times \{+, -\}$

(q, -) means "q, working on upper track"

(q, +) means "q, working on lower track"

New transitions:

If
$$\delta(p, a_-) = (q, b, L)$$
, let $\delta'((p, -), (a_-, a_+)) = ((q, -), (b, a_+), R)$

Also need new transitions for moving right, lower track, hitting \$, initializing input into 2-track format

Multi-Tape TMs

Fixed number of tapes k (can't change during computation) Transition function $\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$ whe take L $\{L, R, S\}^k$ when $\{L, R, S\}^k$ when

2/24/2021

CS332 - Theory of Computation

Multi-Tape TMs are Equivalent to Single-Tape TMs

Theorem: Every k-tape TM M with can be simulated by an equivalent single-tape TM M'

