BU CS 332 – Theory of Computation

Lecture 12:
• More on NTMs
• Church-Turing Thesis
• Decidable Languages

Reading:
Sipser Ch 3.2, 4.1

Mark Bun
March 3, 2021
Nondeterministic TMs

At any point in computation, may nondeterministically branch. Accepts iff there exists an accepting branch.

Transition function $\delta : Q \times \Gamma \rightarrow P(Q \times \Gamma \times \{L, R, S\})$
Nondeterministic TMs

An NTM N accepts input w if when run on w it accepts on at least one computational branch

$L(N) = \{ w \mid N \text{ accepts input } w \}$

An NTM N is a decider if on every input, it halts on every computational branch

NTM recognizers can be simulated by deterministic TM recognizers

NTM deciders can be simulated by NTM deciders

$w \in L \Rightarrow$ there exists a branch leading to accept on input w

$w \notin L \Rightarrow$ all branches lead to reject
Nondeterministic TMs

Ex. NTM decider for $L = \{w \mid w$ is a binary number representing the product of two integers $a, b \geq 2\}$

On input w:
1. Nondeterministically guess $a, b \in \{2, ..., w\}$
2. Accept if $a \times b = w$, reject otherwise.

Proof of correctness:
If $w \in L$, there exist \hat{a}, \hat{b} such that $\hat{a} \times \hat{b} = w$. Computation branch where we guessed $a = \hat{a}, b = \hat{b}$ accepts, so NTM accepts.
If $w \notin L$, all choices of a, b reject, so NTM does not accept.

This NTM is a decider because it halts on every computational branch.
Simulating NTMs

Theorem: Every nondeterministic TM can be simulated by an equivalent deterministic TM

Proof idea: “Tree of possible computations”
Simulating NTMs

Which of the following algorithms is always appropriate for searching the tree of possible computations for an accepting configuration?

a) Depth-first search: Explore as far as possible down each branch before backtracking

b) Breadth-first search: Explore all the configurations at depth 1, then all the configurations at depth 2, etc.

c) Either will always work
Simulating TMs

Theorem: Every nondeterministic TM can be simulated by an equivalent deterministic TM

Proof idea:

Breadth-first search:
Systematically try all 1-step computations, all 2-step computations, ... and see if one of them accepts
Nondeterministic TMs

Theorem: Every nondeterministic TM can be simulated by an equivalent deterministic TM

Proof idea: Simulate an NTM N using a 3-tape TM

(See Sipser for full description)
TM

TMs are equivalent to...

• TMs with “stay put”
• TMs with 2-way infinite tapes
• Multi-tape TMs
• Nondeterministic TMs
• Random access TMs
• Enumerators
• Finite automata with access to an unbounded queue
• Primitive recursive functions
• Cellular automata

...
Church-Turing Thesis

The equivalence of these models is a **mathematical theorem**

Church-Turing Thesis v1: The basic TM (hence all of these models) captures our intuitive notion of algorithms

Church-Turing Thesis v2: Any physically realizable model of computation can be simulated by the basic TM

The Church-Turing Thesis is **not** a mathematical statement!

"Meta-mathematical"
Decidable Languages
1928 – The Entscheidungsproblem

The “Decision Problem”

Is there an algorithm which takes as input a formula (in first-order logic) and decides whether it’s logically valid?

Question: Can computers automate mathematicians?

Question: How automatable are the tasks we saw in language theory?
Questions about regular languages

• Given a DFA D and a string w, does D accept input w?
• Given a DFA D, does D recognize the empty language?
• Given DFAs D_1, D_2, do they recognize the same language?

(Same questions apply to NFAs, regexes)

Goal: Formulate each of these questions as a language, and decide them using Turing machines
Questions about regular languages

Design a TM which takes as input a DFA D and a string w, and determines whether D accepts w.

How should the input to this TM be represented?

Let $D = (Q, \Sigma, \delta, q_0, F)$. List each component of the tuple separated by #

- Represent Q by ,-separated binary strings
- Represent Σ by ,-separated binary strings
- Represent $\delta : Q \times \Sigma \rightarrow Q$ by a ,-separated list of triples (p, a, q), ...

Denote the encoding of D, w by $\langle D, w \rangle$
Example

\[q_0 : 0, \quad q_1 : 1 \]

\[\Sigma = \{ a, b \} \quad \delta_a = 00 \quad \delta_b = 11 \]

\[S(q_0,a) = q_0, \ldots \]

\[L \Omega = 0,1 \# 00,11 \# (0,00,1), (0,11,0), (1,00,0), (1,11,1) \]

\[\# 0 \# 0 \]

\[\delta \]
Representation independence

Computability (i.e., decidability and recognizability) is not affected by the precise choice of encoding

Let \[
\cdot \\]
be a different encoding scheme

Why? A TM can always convert between different (reasonable) encodings

- Decide if \([0, w] \) accepts \(D \) if \(D \) which accepts \(w \) as follows:
 1) Convert encoding \([n, w]\) to \(\langle 0, w \rangle\)
 2) Give \(\langle 0, w \rangle\), determine if \(D \) accepts \(w \)

We’ll take \(\langle \cdot \rangle \) to mean “any reasonable encoding”
A “universal” algorithm for recognizing regular languages

\[A_{\text{DFA}} = \{ \langle D, w \rangle \mid \text{DFA } D \text{ accepts } w \} \]

Theorem: \(A_{\text{DFA}} \) is decidable

Proof: Define a 3-tape TM \(M \) on input \(\langle D, w \rangle \):

1. **Check if \(\langle D, w \rangle \) is a valid encoding (reject if not)**
2. **Simulate \(D \) on \(w \), i.e.,**
 - Tape 2: Maintain \(w \) and head location of \(D \)
 - Tape 3: Maintain state of \(D \), update according to \(\delta \)
3. **Accept if \(D \) ends in an accept state, reject otherwise**
Other decidable languages

$$A_{DFA} = \{ \langle D, w \rangle \mid \text{DFA } D \text{ accepts } w \}$$

$$A_{NFA} = \{ \langle N, w \rangle \mid \text{NFA } N \text{ accepts } w \}$$

$$A_{REX} = \{ \langle R, w \rangle \mid \text{regular expression } R \text{ generates } w \}$$
NFA Acceptance

Which of the following describes a decider for $A_{NFA} = \{\langle N, w \rangle \mid \text{NFA } N \text{ accepts } w \}$?

a) Using a deterministic TM, simulate N on w, always making the first nondeterministic choice at each step. Accept if it accepts, and reject otherwise.

b) Using a deterministic TM, simulate all possible choices of N on w for 1 step of computation, 2 steps of computation, etc. Accept whenever some simulation accepts.

c) Convert N to an equivalent DFA M. Simulate M on w, accept if it accepts, and reject otherwise.
Regular Languages are Decidable

Theorem: Every regular language \(L \) is decidable

Proof 1: If \(L \) is regular, it is recognized by a DFA \(D \). Convert this DFA to a TM \(M \). Then \(M \) decides \(L \).

Proof 2: If \(L \) is regular, it is recognized by a DFA \(D \). The following TM \(M_D \) decides \(L \).

On input \(w \):

1. Run the decider for \(A_{\text{DFA}} \) on input \(\langle D, w \rangle \)
2. Accept if the decider accepts; reject otherwise

Analysis:
- If \(w \in L \), \(\langle 0, w \rangle \rightarrow A_{\text{DFA}} \rightarrow \text{decider accepts} \)
- If \(w \notin L \), \(\langle 0, w \rangle \rightarrow A_{\text{DFA}} \rightarrow \text{decider rejects} \)
Classes of Languages

- Regular
- Decidable
- Recognizable