BU CS 332 – Theory of Computation

Lecture 13:

- Decidable Languages
- Universal TM
- Countability and Diagonalization

Reading:

Sipser Ch 4.1, 4.2

Mark Bun March 8, 2021

A "universal" algorithm for recognizing regular languages "Given OFA O, Shing W,

 $A_{DFA} = \{\langle D, w \rangle \mid DFA D \text{ accepts } w\}$

Theorem: A_{DFA} is decidable

Proof: Define a 3-tape TM M on input $\langle D, w \rangle$:

- 1. Check if $\langle D, w \rangle$ is a valid encoding (reject if not)
- 2. Simulate D on w, i.e.,
 - Tape 2: Maintain w and head location of D
 - Tape 3: Maintain state of D, update according to δ
- 3. Accept if D ends in an accept state, reject otherwise

More Decidable Languages: Emptiness Testing

Theorem: $E_{DFA} = \{\langle D \rangle \mid D \text{ is a DFA that recognizes } \emptyset \}$ is decidable

Froof: The following TM decides E_{DFA} Theorem: $E_{DFA} = \{\langle D \rangle \mid D \text{ is a DFA that recognizes } \emptyset \}$ is decidable

Froof: The following TM decides E_{DFA}

On input $\langle D \rangle$, where D is a DFA with k states:

- 1. Perform k steps of breadth-first search on state diagram of D to determine if an accept state is reachable from the start state
- 2. Reject if a DFA accept state is reachable; accept otherwise

E_{DFA} Example

New Deciders from Old: Equality Testing

 $EQ_{\mathrm{DFA}} = \{\langle D_1, D_2 \rangle \mid D_1, D_2 \text{ are DFAs and } L(D_1) = L(D_2)\}$

Theorem: EQ_{DFA} is decidable

Proof: The following TM decides EQ_{DFA}

On input $\langle D_1, D_2 \rangle$, where $\langle D_1, D_2 \rangle$ are DFAs:

- 2. Run the decider for E_{DFA} on $\langle D \rangle$ and return its output A_{PA} and $A_$

Symmetric Difference

 $A \triangle B = \{ w \mid w \in A \text{ or } w \in B \text{ but not both} \}$

$$A \Delta B = (A \setminus B) \cup (B \setminus A)$$

$$= (A \cap B) \cup (B \cap A)$$

$$= (\overline{A} \cup B) \cup (\overline{B} \cup A)$$

If
$$A = L(0)$$
, $B = L(0) = 1$ (an construct DFA for $L(0)$) a using complement, unson, and subset $\frac{3}{8}/2021$ CS332-Theory of Computation constructions $\frac{3}{8}$

Meta-Computational Languages

```
A_{\text{DFA}} = \{\langle D, w \rangle \mid \text{DFA } D \text{ accepts } w\}

A_{\text{TM}} = \{\langle M, w \rangle \mid \text{TM } M \text{ accepts } w\}
```

 $E_{\text{DFA}} = \{\langle D \rangle \mid \text{DFA } D \text{ recognizes the empty language } \emptyset\}$ $E_{\text{TM}} = \{\langle M \rangle \mid \text{TM } M \text{ recognizes the empty language } \emptyset\}$

```
EQ_{\mathrm{DFA}} = \{\langle D_1, D_2 \rangle \mid D_1 \text{ and } D_2 \text{ are DFAs}, L(D_1) = L(D_2)\}

EQ_{\mathrm{TM}} = \{\langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs}, L(M_1) = L(M_2)\}
```

The Universal Turing Machine

 $A_{\text{TM}} = \{\langle \underline{M}, w \rangle \mid M \text{ is a TM that accepts input } w\}$ Theorem: A_{TM} is Turing-recognizable

The following "universal TM" U recognizes A_{TM}

On input $\langle M, w \rangle$:

- 1. Simulate running *M* on input *w*
- 2. If *M* accepts, accept. If *M* rejects, reject.

Universal TM and A_{TM}

Why is the Universal TM not a decider for A_{TM} ?

The following "universal TM" U recognizes A_{TM}

On input $\langle M, w \rangle$: "encoding of a pair consisting of a TM M and string w"

- 1. Simulate running M on input w
- If M accepts, accept. If M rejects, reject.
- It may reject inputs $\langle M, w \rangle$ where M accepts w
- It may accept inputs $\langle M, w \rangle$ where M rejects w
- It may loop on inputs $\langle M, w \rangle$ where M loops on w
- It may loop on inputs $\langle M, w \rangle$ where M rejects w

More on the Universal TM

"It is possible to invent a single machine which can be used to compute any computable sequence. If this machine **U** is supplied with a tape on the beginning of which is written the S.D ["standard description"] of some computing machine **M**, then **U** will compute the same sequence as **M**."

- Foreshadowed general-purpose programmable computers
- No need for specialized hardware: Virtual machines as software

Harvard architecture: Separate instruction and data pathways

von Neumann architecture: Programs can be treated as data

Undecidability

 $A_{\rm TM}$ is Turing-recognizable $v = U_{\rm AM} = U_{\rm$

...but it turns out $A_{\rm TM}$ (and $E_{\rm TM}$, $EQ_{\rm TM}$) is **undecidable**

i.e., computers cannot solve these problems no matter how much time they are given

Countability and Diagonalizaiton

What's your intuition?

Which of the following sets is the "biggest"?

POUZ SESIN

- a) The natural numbers: $\mathbb{N} = \{1, 2, 3, ...\}$
- b) The even numbers: $E = \{2, 4, 6, ...\}$
- c) The positive powers of 2: $POW2 = \{2, 4, 8, 16, ...\}$
- d) They all have the same size 🚄

Set Theory Review

A function $f: A \to B$ is

- 1-to-1 (injective) if $f(a) \neq$ f(a') for all $a \neq a'$
- onto (surjective) if for all $b \in B$, there exists $a \in A$ such that f(a) = b
- a correspondence (bijective) if it is 1-to-1 and onto, i.e., every $b \in B$ has a unique $a \in A$ with f(a) = b

How can we compare sizes of infinite sets?

Definition: Two sets have the same size if there is a

bijection between them

A set is countable if

- it is a finite set, or
- it has the same size as N, the set of natural numbers

Examples of countable sets

```
• \emptyset
• \{0,1\}
• \{0,1,2,...,8675309\}
```

$$F = \{2, 4, 6, 8, ...\} \quad f(i) = 2i$$

$$SQUARES = \{1, 4, 9, 16, 25, ...\} \quad f(i) = i^{2}$$

$$POW2 = \{2, 4, 8, 16, 32, ...\} \quad f(i) = 2^{i}$$

$$Formula | E| = |SQUARES| = |POW2| = |N|$$

$$Formula | E| = |SQUARES| = |POW2| = |N|$$

(onstruct bisection find -> IN x IN

How to show that $\mathbb{N} \times \mathbb{N}$ is countable?

How to argue that a set S is countable

• Describe how to "list" the elements of S, usually in stages:

```
Ex: Stage 1) List all pairs (x, y) such that x + y = 2 (1,1)

Stage 2) List all pairs (x, y) such that x + y = 3 (1,1)

...

Stage n List all pairs (x, y) such that x + y = n + 1

n^{1/2} diagonal

...
```

Argue that every element of S appears in the list

Ex: Any $(x, y) \in \mathbb{N} \times \mathbb{N}$ will be listed in stage x + y - 1

• Define the bijection $f: \mathbb{N} \to S$ by f(n) = the n'th element in this list (ignoring duplicates if needed)

Subsets of countable sets

If A and B are sets with $A \subseteq B$ (A is a subset of B), which of the following statements are true?

- a) If A is countable, then B is countable
- b) If B is countable, then A is countable
- c) Both are true
- d) Neither is true

More examples of countable sets

• {0,1} *

- (.): \$ all TM 53 -> 30,13*
- $\{\langle M \rangle \mid M \text{ is a Turing machine}\} \subseteq 30,13^*$
- Q = {rational numbers} use the rashection for INXIN

numerators denominators

So what *isn't* countable?

Cantor's Diagonalization Method

Georg Cantor 1845-1918

- Invented set theory
- Defined countability, uncountability, cardinal and ordinal numbers, ...

Some praise for his work:

"Scientific charlatan...renegade...corruptor of youth" –L. Kronecker

"Set theory is wrong...utter nonsense...laughable"

-L. Wittgenstein

Uncountability of the reals

Theorem: The real interval (0, 1) is uncountable.

Proof: Assume for the sake of contradiction it were countable, and let $f: \mathbb{N} \to (0,1)$ be a bijection

n	f(n)	
1	$0 d_1^1 d_2^1 d_3^1 d_4^1 d_5^1 \dots$	d's = 1 th digit
2	$0 . d_1^2 d_2^2 d_3^2 d_4^2 d_5^2$	of fin)
3	$0 . d_1^3 d_2^3 d_3^3 d_4^3 d_5^3$	set b, \$ d!
4	$0 . d_1^4 d_2^4 d_3^4 d_4^4 d_5^4$	
5	$0 . d_1^5 d_2^5 d_3^5 d_4^5 d_5^5 \dots$	Set $b_2 \neq d_2^2$ $b_3 \neq d_3^3$

Construct $b \in (0,1)$ which does not appear in this table

- contradiction! by soft f(n) for any
$$n$$
 (while its of height onto $b=0$. $b_1b_2b_3$... where $b_n\neq d_n$ (digit n of $f(n)$)

3/8/2021 $\forall n$ $b_n\neq d_n$ (c_{cs332} - Theory of Computation c_{cs332} - Theory of c_{cs332} - Th