BU CS 332 – Theory of Computation

Lecture 15:

• Review mid-semester feedback
• Reductions

Reading:
Sipser Ch 5.1

Mark Bun
March 15, 2021
What helps you learn best?

• Lectures in general (13)
• In-class examples / walkthroughs (11)
• Interaction in lecture, polls (7)
• Discussion sections in general (7)
• Gradescope check-ins (5)
• Homework – useful, appropriate length/difficulty (5)
• Automata Tutor, TM simulator (4)
• Office hours (4)
• Course organization, perspective (3)
• Annotated slides (3)
• Piazza use (3)
• Homework feedback
• Reading
What hinders your learning?

- Remote format, COVID / Zoom fatigue (7)
- Course difficulty, recent increase in difficulty (4)
- Proofs, proof assignments on homework (2)
- Too theoretical / knowledge of concepts but not how to use them (2)
- Homework too long, too difficult (2)
- Automata Tutor / Morphett
- Turing machines
- Starting homework late
- Vague answers in office hours
- Transferring lecture knowledge to homework
- Delay on homework feedback
- Sipser book
- Difficulty finding collaborators
- Gradescope check-ins
- Instructor mistakes
- Weekly (vs. less frequent) assignments
- Instructor handwriting
- Course pace too fast
- Can’t turn in late work
Suggestions for course improvement

• More office hours (3)
• More examples (3)
• Recommendations for what’s expected on HW solutions (3)
• More polls, interaction (2)
• Better / more visible handwriting, or type on slides (2)
• Faster turnaround on grades (2)
• +12 hours on HW submissions (2)
• Supplementary readings / videos (2)
• Shorter breakouts in discussion
• Releasing homework earlier
• Guidance on how to prove things
• Homeworks build up from easier to harder questions
• Homework solutions
• Tutoring sessions
• Old exam questions during discussion
• More ungraded practice
• Less difficult homework
• Slower lectures
• Free A’s
Clarity of expectations

• Seems mostly clear

• Reminder of resources to take advantage of:
 Sipser textbook
 Lectures (slides, recordings, Gradescope check-ins)
 Discussions (in-class meetings, solution recording, posted slides)
 Homework feedback, posted solutions
 Office hours
 Piazza

• See Lecture 1, Slides 13-17 for more advice
Suggestions for self-improvement

• Keep up with readings (24)
 “I believe reading the textbook is more helpful that students realize. I have been reading the textbook inconsistently and I find the weeks that I do the reading, I can better understand the lecture material.”

• Time management (10)
• Review lecture / discussion materials (8)
• Attend more office hours (5)
• Participate in class more actively (5)
• Attend more discussions (2)
• Do example problems in Sipser (2)
• Find collaborators
• Remember to do Gradescope check-ins
• Participate on Piazza
Discussion format / feedback

- Nadya’s awesome (9)
- Breakout rooms can be awkward / not useful (3)
- New format is more engaging, allow for solving more problems (2)
- Discussion problems too easy
Proposed Course Modifications

• Poll for more office hours, tutoring

• Discussions
 - Keeping new format (class time for breakout rooms, solution video after)
 - Nadya will kick start discussion in quieter groups

• Homework more approachable and useful
 - More explicit guidance on components of a complete solution (See also lecture slides where I try to do this)
 - Gradient from easier (mechanical) to harder (creative) questions
Other questions / concerns

• Is the final cumulative?
 Yes, with an emphasis on last third of material

• Is there a curve?
 Can expect grade increases for scores especially in the 50-75% range

• Specific concerns about test grades (especially relative to HW)
 Come talk to us about this. Office hours can be an awkward time, so schedule an appointment
Undecidability and Reductions
Undecidability / Unrecognizability

Definition: A language L is undecidable if there is no TM deciding L

Definition: A language L is unrecognizable if there is no TM recognizing L
Last time: Two explicit undecidable languages

\[UD = \{ \langle M \rangle \mid M \text{ is a TM that does not accept on input } \langle M \rangle \} \]

- Shown directly by diagonalization

\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \} \]

- “Reduction” from the undecidability of \(UD \)
Scientists vs. Engineers

A computer scientist and an engineer are stranded on a desert island. They find two palm trees with one coconut on each. The engineer climbs a tree, picks a coconut and eats.

The computer scientist climbs the second tree, picks a coconut, climbs down, climbs up the first tree and places it there, declaring success.

“Now we’ve reduced the problem to one we’ve already solved.” (Please laugh)
Reductions

A reduction from problem A to problem B is an algorithm for problem A which uses an algorithm for problem B as a subroutine.

If such a reduction exists, we say “A reduces to B”
Reductions

A reduction from problem A to problem B is an algorithm for problem A which uses an algorithm for problem B as a subroutine.

If such a reduction exists, we say “A reduces to B”.

If A reduces to B, and B is decidable, what can we say about A?

a) A is decidable
b) A is undecidable
c) A might be either decidable or undecidable
Two uses of reductions

Positive uses: If A reduces to B and B is decidable, then A is also decidable

$EQ_{DFA} = \{\langle D_1, D_2 \rangle \mid D_1, D_2 \text{ are DFAs and } L(D_1) = L(D_2)\}$

Theorem: EQ_{DFA} is decidable

Proof: The following TM decides EQ_{DFA}

On input $\langle D_1, D_2 \rangle$, where $\langle D_1, D_2 \rangle$ are DFAs:

1. Construct a DFA D that recognizes the symmetric difference $L(D_1) \triangle L(D_2)$

2. Run the decider for E_{DFA} on $\langle D \rangle$ and return its output
Two uses of reductions

Negative uses: If \(A \) reduces to \(B \) and \(A \) is undecidable, then \(B \) is also undecidable

\[
A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts input } w\}
\]
Suppose \(H \) decides \(A_{TM} \)

Consider the following TM \(D \).

On input \(\langle M \rangle \) where \(M \) is a TM:
1. Run \(H \) on input \(\langle M, \langle M \rangle \rangle \)
2. If \(H \) accepts, reject. If \(H \) rejects, accept.

Claim: \(D \) decides
\[
UD = \{\langle M \rangle \mid M \text{ is a TM that does not accept input } \langle M \rangle\}
\]
Two uses of reductions

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

Template for undecidability proof by reduction:

1. Suppose to the contrary that B is decidable
2. Using a decider for B as a subroutine, construct an algorithm deciding A
3. But A is undecidable. Contradiction!
Halting Problem

Computational problem: Given a program (TM) and input \(w \), does that program halt (either accept or reject) on input \(w \)?

Formulation as a language:
\[\text{HALT}_{TM} = \{ \langle M, w \rangle | M \text{ is a TM that halts on input } w \} \]

Ex. \(M = \) “On input \(x \) (a natural number in binary):
 For each \(y = 1, 2, 3, \ldots \):
 If \(y^2 = x \), accept. Else, continue.”

Is \(\langle M, 101 \rangle \in \text{HALT}_{TM} \)?

a) Yes, because \(M \) accepts on input 101
b) Yes, because \(M \) rejects on input 101
c) No, because \(M \) rejects on input 101
d) No, because \(M \) loops on input 101
Halting Problem

Computational problem: Given a program (TM) and input \(w \), does that program halt on input \(w \)?

Formulation as a language:
\[
HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM that halts on input } w \}\]

Ex. \(M = \) “On input \(x \) (a natural number in binary):
 For each \(y = 1, 2, 3, \ldots \):
 If \(y^2 = x \), accept. Else, continue.”

\(M' = \) “On input \(x \) (a natural number in binary):
 For each \(y = 1, 2, 3, \ldots, x \):
 If \(y^2 = x \), accept. Else, continue.
 Reject.”
Halting Problem

\[\text{HALT}_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \} \]

Theorem: \(\text{HALT}_{\text{TM}} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(H \) for \(\text{HALT}_{\text{TM}} \). We construct a decider for \(A_{\text{TM}} \) as follows:

On input \(\langle M, w \rangle \):
1. Run \(H \) on input \(\langle M, w \rangle \)
2. If \(H \) rejects, reject
3. If \(H \) accepts, run \(M \) on \(w \)
4. If \(M \) accepts, accept
 Otherwise, reject.

This is a reduction from \(A_{\text{TM}} \) to \(\text{HALT}_{\text{TM}} \)
Halting Problem

Computational problem: Given a program (TM) and input w, does that program halt on input w?

- A central problem in formal verification

- Dealing with undecidability in practice:
 - Use heuristics that are correct on most real instances, but may be wrong or loop forever on others
 - Restrict to a “non-Turing-complete” subclass of programs for which halting is decidable
 - Use a programming language that lets a programmer specify hints (e.g., loop invariants) that can be compiled into a formal proof of halting
Empty language testing for TMs

\[E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

Theorem: \(E_{TM} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(E_{TM} \). We construct a decider for \(A_{TM} \) as follows:

On input \(\langle M, w \rangle \):

1. Run \(R \) on input ???

This is a reduction from \(A_{TM} \) to \(E_{TM} \)
Empty language testing for TMs

\[E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \]

Theorem: \(E_{\text{TM}} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(E_{\text{TM}} \). We construct a decider for \(A_{\text{TM}} \) as follows:

On input \(\langle M, w \rangle \):

1. Construct a TM \(N \) as follows:
2. Run \(R \) on input \(\langle N \rangle \)
3. If \(R \) accepts, accept. Otherwise, reject

What do we want out of machine \(N \)?

a) \(L(N) \) is empty iff \(M \) accepts \(w \)
b) \(L(N) \) is non-empty iff \(M \) accepts \(w \)
c) \(L(M) \) is empty iff \(N \) accepts \(w \)
d) \(L(M) \) is non-empty iff \(N \) accepts \(w \)

This is a reduction from \(A_{\text{TM}} \) to \(E_{\text{TM}} \).
Empty language testing for TMs

\[E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

Theorem: \(E_{TM} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(E_{TM} \). We construct a decider for \(A_{TM} \) as follows:

On input \(\langle M, w \rangle \):

1. Construct a TM \(N \) as follows:
 “On input \(x \):
 Run \(M \) on \(w \) and output the result.”
2. Run \(R \) on input \(\langle N \rangle \)
3. If \(R \) rejects, accept. Otherwise, reject

This is a reduction from \(A_{TM} \) to \(E_{TM} \)
Interlude: Formalizing Reductions (Sipser 6.3)

Informally: A reduces to B if a decider for B can be used to construct a decider for A

One way to formalize:

- An *oracle* for language B is a device that can answer questions “Is $w \in B$?”
- An *oracle TM* M^B is a TM that can query an oracle for B in one computational step

A is Turing-reducible to B (written $A \leq_T B$) if there is an oracle TM M^B deciding A
Equality Testing for TMs

\[EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Theorem: \(EQ_{TM} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(EQ_{TM} \). We construct a decider for \(A_{TM} \) as follows:

On input \(\langle M, w \rangle \):
1. Construct TMs \(N_1, N_2 \) as follows:
 \[N_1 = \quad N_2 = \]
2. Run \(R \) on input \(\langle N_1, N_2 \rangle \)
3. If \(R \) accepts, *accept*. Otherwise, *reject*.

This is a reduction from \(A_{TM} \) to \(EQ_{TM} \)
Regular language testing for TMs

$$REG_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \}$$

Theorem: REG_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for REG_{TM}. We construct a decider for A_{TM} as follows:

On input $\langle M, w \rangle$:

1. Construct a TM N as follows:
 2. Run R on input $\langle N \rangle$
 3. If R accepts, accept. Otherwise, reject

This is a reduction from A_{TM} to REG_{TM}
Regular language testing for TMs

\[\text{REG}_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular} \} \]

Theorem: \(\text{REG}_{\text{TM}} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(\text{REG}_{\text{TM}} \). We construct a decider for \(A_{\text{TM}} \) as follows:

On input \(\langle M, w \rangle \):

1. Construct a TM \(N \) as follows:
 \[
 N = \text{"On input } x, \text{ accept if } x \in \{0^n1^n \mid n \geq 0\}, \text{ run } M \text{ on input } w, \text{ accept if } M \text{ accepts, reject."
 }

2. Run \(R \) on input \(\langle N \rangle \)
3. If \(R \) accepts, accept. Otherwise, reject.

This is a reduction from \(A_{\text{TM}} \) to \(\text{REG}_{\text{TM}} \)