BU CS 332 — Theory of Computation

Lecture 16: Reading:

 Examples of Reductions Sipser Ch 5.1
* Test 2 Review

Mark Bun
March 15, 2021



Reductions

A reduction from problem A to problem B is an algorithm

for problem A which uses an algorithm for problem B as a
subroutine

If such a reduction exists, we say “A reduces to B”

Positive uses: If A reduces to B and B is decidable, then A
is also decidable

Ex. Eppa is decidable = EQpppa is decidable

Negative uses: If A reduces to B and A is undecidable,
then B is also undecidable a0 decdahie

Ex. A7y is undecidable = HALTyy is ééfeitadtes
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Equality Testing for TMs &= 37| Lt = $3

EQrm = {{My, M3) My, M, are TMs and L(M;) = L(M,)}
Theorem: EQry is undecidable “\wtuooe vteognaed My W,

Proof: Suppose for contradiction that there exists a decider R
for EQrwm- We construct a decider for Ety as follows;

On input (M):
1. Construct TMs Ny, N, as follows:
N]_ - N2 =

2. Run R on input (N, N,)
3. If R accepts, accept. Otherwise, reject.

Toecr & Eam This is a reduction from E7p to EQmy
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. . (.(U.\ = LMy E2 @ wﬁ*(”, N 7<,_'5
Equality Testing for TMs =~ “Jue ¢ ome ;
L(m)=
What do we want out of the machines Ny, N,?
a) L(M) = @iff Ny = N, |b) L(M) = @ iff L(N;) = L(N,),
¢c) LIM)=0iff Ny #N, d)L(M)=0@iff L(N;) # L(N,)

On input (M):
1. Construct TMs Ny, N, as follows:
Ny = M Ny= [w ot (v) =)
TO0A Nt X )
feect

2. Run R oninput (N, N,)
3. If R accepts, accept. Otherwise, reject.

This is a reduction from Ety to EQ1pm
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Equality Testing for TMs \g‘%’f__ﬁe_dwm

EQrm = {{My, M3) My, M, are TMs and L(M;) = L(M,)}
Theorem: EQT)p is undecidable ot LMY= ¢ &2 LN £ LN

Proof: Suppose for contradiction that there exists a decider R
for EQrp. We construct a decider fortdty as follows:

On input {M): 51,92,5y,. 1% an enumenhe of al « :‘j‘fﬁ..”
1. Construct TMs N; /N, as follows: S<oe » 55 (yy=
Nl = On ‘N‘cﬂ'\' P G Nz = T,: « f L(")#}é
For (21,1,%, 0N b ¢ & Llm)g
Lea W o wid S Ar akegpt
v %\—(("u iy \4 q‘(cap'-\)'a((af L(Nz) :‘Z‘*

Bl (okae . ™

2. Run R on jnput (N, N,)

ecd
3/fR afa%)e‘:é:t%, accept. Otherwise, reject.

‘Do dal, “ N This is a reduction from E1y to EQ1Mm
\ retalyg M Ny adah T2 F ST M aden s: &) LM #4 Y
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Regular language testing for TMs, 4 ¢w.n | m

M acgfhr ‘W}ws
REGty = {{M) |[M isa TM and L(M) is’regular}

Theorem: RE Gty is undecidable

Proof: Suppose for contradiction that therelexists a decider R
for REGTy. We construct a decider for Aty as follows:

On input (M, w): (M) EArw E L ateps
1. Constructa TM N as follows: (=5 W
o LINY D o
0y T % Wawgh W agdol Japag
i , M al = L(N)
20',\ \A \V\7/Ozj S Ao(;‘vk;"’ H Wc,jar
A(ep
: o = UN)
2. Run R on input (N) N\d;l’(‘:«?*w wat m‘,dbw

3. If R accepts, accept. Otherwise, reject

This is a reduction from Aty to REGTv
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Ex- M does wot

Regular language testing for TMs “ag 5, 200

RN L IRVINE Y e ?‘l w¥ecte ¢ o
aeh W 2 G S 0n
"o ISECQ:;KA = {(M) |M isaTM and L(M) is regulal‘ra}'
Theorem: RE Gy is undecidable )

Proof: Suppose for contradiction that there exists a decider R
for REGTy. We construct a decider for Aty as follows:

On input (M, w): \oﬁ M awh,
- =%
1. Constructa TM N as follows: LM = 2
N =“Oninput x,& Coxd geenlly "c; dffeed | o 76 M o wot
M (W - Q’WL \L‘E.

1.1f x € {0™"1™ | n = 0}, accept L

M =30 1"nz0
2.Run TM M on input w LRy =50 Va2 )

3. If M accepts, accept. Otherwise, reject.” -
' = 53" 1"\ J
2. Run R on input (IL) . M | LW %oqﬁ ! /'gljws.w}'
3.1fR accepts, accept. therwise, reject | Sz_.g N Aj_ﬁ_g,
This is a reduction from Aty to REGTv
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Test 2 Topics
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Turing Machines (3.1, 3.3)

e Know the three different “levels of abstraction” for
defining Turing machines and how to convert between

them: Formal/state diagram, implementation-level, and
high-level

* Know the definition of a configuration of a TM and the
formal definition of how a TM computes

* Know how to “program” Turing machines by giving state
diagrams and implementation-level descriptions

* Understand the Church-Turing Thesis



TM Variants (3.2)

* Understand the following TM variants: TM with stay-put,
TM with two-way infinite tape, Multi-tape TMs,
Nondeterministic TMs

* Know how to give a simulation argument
(implementation-level and high-level description) to
compare the power of TM variants

e Understand the specific simulation arguments we’ve
seen: two-way infinite TM by basic TM, multi-tape TM
by basic TM, nondeterministic TM by basic TM



Decidability (4.1)

e Understand how to use a TM to simulate another
machine (DFA, another TM)  Upesd

* Know the specific decidable languages from language
theory that we’ve discussed, and how to decide them:

Apra, Epra, EQpFa, etc.

* Know how to use a reduction to one of these languages
to show that a new language is decidable



Undecidability (4.2)

* Know the definitions of countable and uncountable sets
and how to prove countability and uncountability

* Understand how diagonalization is used to prove the
existence of an explicit undecidable language UD

* Know that a language is decidable iff it is recognizable
and its complement is recognizable, and understand the

proof b dadane D A recoga bl
0md
A e (ogn Ve



Reducibility (5.1)

e Understand how to use a reduction (contradiction
argument) to prove that a language is undecidable

* Know the reductions showing that HALT 1y,
Ery, REGULAR Ty, EQ7y are undecidable

* You are not responsible for understanding the
computation history method.



True or False

* It’s all about the justification!

* The logic of the argument has to be clear

* Restating the question is not justification; we’re
looking for additional insight

j\.,(r A %u\?{‘ n-) Vqu\‘d') ’\"'1 A{\ ﬂD mu‘ol-),

True. If A is finite, it is regular, as shown in class. The regular languages are closed under

intersection, so A N B is also regular.

A S I PPN WG 'S ,pqq\ar‘
P rod (5 reguler =) Ann mqulor
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Simulation arguments, constructing deciders

To oWl Cqadigl 10 (W, dle Gay WS D gmlal

Wase MM 01 v ™
Give a simulation aygument, using an implementation-level description, to show that TMs with reset
recognize the class o\ Turing-recognizable languages. Hini: You may want to simulate using a two-tape
TM. (12 points) Made\ usd Sy cadgiton
We simulate a TM with reset using a two-tape TM as follows. The first tape of the new machine is
read-only and used the store the input. We initialize the second tape by marking the left end of the
tape with a special symbol $, copying the input, and then marking the right end of the input with
another special symbol #. (These special symbols are in place to allow us to know how much of the
second tape is actually in use during simulation). 4“',“\'\-}:.\20 '?EW

D

To simulate one ordinary step (i.e., read, write, and move) of the TM with reset, we simulate its action
on the second tape of our new machine, treating the cell containing $ as the left end of the tape and
moving the # symbol to the right by one cell if we ever try to overwrite it.

To simulate a reset step, we scan the second tape of the new machine between the $ symbol and the #
to erase its contents and re-initialize the second tape by copying the input from the first tape, again
\(lmunr(‘nlv(l by § and #.

Tmglevddinn Vel decatt®  ob s do o fom o it
* Full credit for a clear and correct description of the new machine
* Can still be a good idea to provide an explanation

(partial credit, clarifying ambiguity)
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Countability proofs

A DNA strand is a finite string over the alphabet {A,C,G,T'}. Show that the set of all DNA
strands 1s countable. (8 points)

We may list the elements of this set in stages i = 0,1,2,... as follows. In stage 0, we list the
empty string, the only string of length 0. In stage 1, we list all strings of length 1, etc. In
general, in stage i, we list all 4' strings of length i. We obtain a correspondence f from the
set of natural numbers into this set of strings by taking f(n) to be the nth string in this hist.

* Describe how to list all the elements in your set, usually
in a succession of finite “stages”

* Describe how this listing process gives you a bijection
from the natural numbers
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Uncountability proofs

Let F = {f : Z — Z} be the set of all functions taking as input an integer and outputting an
integer. Show that F is uncountable. (10 points)

Suppose for the sake of contradiction that / were countable, and let B : N — F be a bijection.
For each i € N, let f; = B(i). Define the function g € F as follows. For every i = 1,2,... let
g(i) = fi(i) + 1. For every i = 0,—-1,-2,..., let g(i)’]: 0. This definition of the function g
ensures that g(i) # fi(i) for every i € N. Hence, g #(f; = B(i) for any i, which contradicts
the onto property of the map B.

Gj('c),'\\v,w\ 9 s wak
Yo mege ofF &
 The 2-D table is useful for helping you think about
diagonalization, but does not need to appear in the proof
* The essential part of the proof is the construction of the
“inverted diagonal” element, and the proof that it works
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Undecidability proofs

Show that the language Y is undecidable. (10 points)

We show that Y is undecidable by giving a reduction from Atpm. Suppose for the sake of
contradiction that we had a decider R for Y. We construct a decider for Aty as follows:

“On input (M, w): } % up  cndndidng
| ‘ o . orgumnt”
1. Use M and w to construct the following TM M’:
M'" = “On input z:
1. If z has even length, accept
2R Monw Deccive decder far loa
. If M accepts, accept. If M rejects, reject.” ‘
2. Run R on input (M) fe&v..v&g Lram
3. If R accepts, reject. If R rejects, accept.”
!

If M accepts w, then the machine M’ accepts all strings. On the other hand, if M does not
accept w, then M’ only accepts strings of even length. | Explan vﬂh\o © duckr O ot

Hence this machine decides Aty which is a contradiction, since ATy is undecidable. Hence
Y must be undecidable as well. '\ (oa \ude
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Practice Problems
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Decidability and
Recognizability
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Let A= {(D)]
D is a DFA that does not accept any string
containing an odd number of 1's}

Show that A is decidable
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Prove that E1y is recognizable
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Prove that if A and B are decidable, then so is
A\B
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Countable and
Uncountable Sets
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Show that the set of all valid (i.e., compiling
without errors) C++ programs is countable
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A Celebrity Twitter Feed is an infinite sequence of ASCII
strings, each with at most 140 characters. Show that the set
of Celebrity Twitter Feeds is uncountable.
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Undecidability and
Unrecognizability
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Prove or disprove: If A and B are
recognizable, thensois A\ B
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Prove that the language ALLty =
{(M)IM isaTM and L(M) = X"} is undecidable

Aﬁ‘a«w{, Lf (M‘\M&(\‘\M ALL—.M des:davie bj m Q.
Nedut Gom loguayt Avm; € onshct W &((\'ﬂ_’) A 05

Lllovs'.
\\@“ LI LW, | M:' ) N\Gw\" <"
\. (ot W N o= Bloss. NP 3
< fas M A W
?' ’ ‘an B or \(‘Q-A'*‘ er) 71\ d(((’m—é; C\(CWL e‘s&)
% TE O aeeh, awpt; ele  eset ve sect

E_\% s M deides P | (odedicdy Uu~dec.deh 13y of sy

%0 \ “ 7"
rclade  Al\gn  wdecdavile W acgh o

: — %
W gat - W atepty, ) Cz’) L( N\ = 2 L(N\ %4 M deee
/
wd  acpr J
3/17/2021 CS332 - Theory of Computation 33



