Lecture 17: Mapping Reductions

Reading: Sipser Ch 5.3

Mark Bun
March 21, 2021
Reductions

A **reduction** from problem A to problem B is an algorithm for problem A which uses an algorithm for problem B as a subroutine.

If such a reduction exists, we say “A reduces to B”.

Positive uses: If A reduces to B and B is decidable, then A is also decidable.

Ex. E_{DFA} is decidable $\Rightarrow E_{Q_{DFA}}$ is decidable

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable.

Ex. E_{TM} is undecidable $\Rightarrow E_{Q_{TM}}$ is undecidable.
What’s wrong with the following “proof”?

Bogus “Theorem”: \(A_{TM} \) is not Turing-recognizable

Bogus “Proof”: Suppose for contradiction that there exists a recognizer \(R \) for \(A_{TM} \). We construct a recognizer for \(\overline{A_{TM}} \):

On input \(\langle M, w \rangle \):
1. Run \(R \) on input \(\langle M, w \rangle \)
2. If \(R \) accepts, reject. Otherwise, accept.

This sure looks like a reduction from \(\overline{A_{TM}} \) to \(A_{TM} \)
Mapping Reductions: Motivation

1. How do we formalize the notion of a reduction?
2. How do we use reductions to show that languages are unrecognizable?
3. How do we protect ourselves from accidentally “proving” bogus statements about recognizability?
Computable Functions

Definition:

A function $f: \Sigma^* \to \Sigma^*$ is computable if there is a TM M which, given as input any $w \in \Sigma^*$, halts with only $f(w)$ on its tape. ("Outputs $f(w)$")
Computable Functions

Definition: A function \(f : \Sigma^* \rightarrow \Sigma^* \) is computable if there is a TM \(M \) which, given as input any \(w \in \Sigma^* \), halts with only \(f(w) \) on its tape. ("Outputs \(f(w) \)")

\[
\langle x, y \rangle = x \# y
\]

Example 1: \(f(\langle x, y \rangle) = x + y \)

Example 2: \(f(\langle M, w \rangle) = \langle M' \rangle \) where \(M \) is a TM, \(w \) is a string, and \(M' \) is a TM that ignores its input and simulates running \(M \) on \(w \)

\[
M' = "On input x: \ \text{Ignore x, run M on w, output result}" \]
Mapping Reductions

Definition:
Language A is mapping reducible to language B, written $A \leq_m B$ if there is a computable function $f: \Sigma^* \rightarrow \Sigma^*$ such that for all strings $w \in \Sigma^*$, we have $w \in A \iff f(w) \in B$.
Mapping Reductions

Definition:

Language A is mapping reducible to language B, written $A \leq_m B$, if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$ such that for all strings $w \in \Sigma^*$, we have $w \in A \iff f(w) \in B$.

Theorem: $A \leq_m B \implies \overline{A} \leq_m \overline{B}$.

If $A \leq_m B$, which of the following is always true?

a) $\overline{A} \leq_m B$

b) $A \leq_m \overline{B}$

c) $\overline{A} \leq_m \overline{B}$

d) $\overline{B} \leq_m \overline{A}$
Decidability

Theorem: If $A \leq_m B$ and B is decidable, then A is also decidable

Proof: Let M be a decider for B and let $f : \Sigma^* \rightarrow \Sigma^*$ be a mapping reduction from A to B. Construct a decider for A as follows:

On input w:
1. Compute $f(w)$
2. Run M on input $f(w)$
3. If M accepts, accept. If it rejects, reject.

Proof of correctness:

1) If $w \in A$, then $f(w) \in B$ [mapping rd.]
 $\Rightarrow M$ accepts on input $f(w)$ [M decides B]
 $\Rightarrow N$ accepts w

2) If $w \notin A$, then $f(w) \notin B$
 $\Rightarrow M$ rejects on input $f(w)$
 $\Rightarrow N$ rejects w
Undecidability

Theorem: If \(A \leq_m B \) and \(B \) is decidable, then \(A \) is also decidable

Corollary: If \(A \leq_m B \) and \(A \) is undecidable, then \(B \) is also undecidable
Old Proof: Equality Testing for TMs

\[EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Theorem: \(EQ_{TM} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(EQ_{TM} \). We construct a decider for \(EQ_{TM} \) as follows:

On input \(\langle M \rangle \):
1. Construct TMs \(M_1, M_2 \) as follows:
 \[M_1 = M \]
 \[M_2 = \text{"On input } x, \text{ 1. Ignore } x \text{ and reject"} \]
2. Run \(R \) on input \(\langle M_1, M_2 \rangle \)
3. If \(R \) accepts, accept. Otherwise, reject.

This is a reduction from \(E_{TM} \) to \(EQ_{TM} \)
New Proof: Equality Testing for TMs

\[EQ_{TM} = \{\langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Theorem: \(E_{TM} \leq_m EQ_{TM} \) hence \(EQ_{TM} \) is undecidable

Proof: The following TM \(N \) computes the reduction \(f \):

\(E_{TM} \text{ undecidable to prove new statement that } EQ_{TM} \text{ undec} \)

On input \(\langle M \rangle \):

1. Construct TMs \(M_1, M_2 \) as follows:
 \[M_1 = M \]
 \[M_2 = "\text{On input } x, 1. \text{Ignore } x \text{ and reject}" \]

2. Output \(\langle M_1, M_2 \rangle \)

Function \(f \) : \(f(\langle M \rangle) = \langle M_1, M_2 \rangle \)

\[L(M) = \emptyset \iff L(M_1) = L(M_2) \]

\[\langle M \rangle \in E_{TM} \iff \langle M_1, M_2 \rangle \in EQ_{TM} \]
Mapping Reductions: Recognizability

Theorem: If \(A \leq_m B \) and \(B \) is recognizable, then \(A \) is also recognizable

Proof: Let \(M \) be a recognizer for \(B \) and let \(f : \Sigma^* \rightarrow \Sigma^* \) be a mapping reduction from \(A \) to \(B \). Construct a recognizer for \(A \) as follows:

1. Compute \(f(w) \)
2. Run \(M \) on input \(f(w) \)
3. If \(M \) accepts, accept. Otherwise, reject.
Unrecognizability

Theorem: If $A \leq_m B$ and B is recognizable, then A is also recognizable.

Corollary: If $A \leq_m B$ and A is unrecognizable, then B is also unrecognizable.

Corollary: If $A_{\text{TM}} \leq_m B$, then B is unrecognizable.

Corollary: If $A_{\text{TM}} \leq_m \overline{B}$ then B is unrecognizable.
Recognizability and A_{TM}

Let L be a language. Which of the following is true?

a) If $L \leq_m A_{TM}$, then L is recognizable
b) If $A_{TM} \leq_m L$, then L is recognizable

Theorem: L is recognizable if and only if $L \leq_m A_{TM}$
Recognizability and A_{TM}

Theorem: L is recognizable if and only if $L \leq_m A_{TM}$

Proof:

\leftarrow Follow from A_{TM} recognizable

\rightarrow Let L be recognizable by TM M. Goal: Construct mapping reduction f from L to A_{TM}. The following TM N computes f:

On input w (instance of L)

Output $\langle M, w \rangle$

Analysis: wts that $w \in L \iff f(w) \in A_{TM}$

1) $w \in L \Rightarrow M$ accepts on input w \[\iff f(w) = \langle M, w \rangle \in A_{TM} \]

2) $w \notin L \Rightarrow M$ does not accept w

$\Rightarrow f(w) = \langle M, w \rangle \notin A_{TM}$