# BU CS 332 – Theory of Computation

Lecture 18:

- More Mapping Reductions
- Computation History Method

Reading: Sipser Ch 5.3, 5.1

Mark Bun

March 24, 2021

# Mapping Reductions

**Definition:** 

Language A is mapping reducible to language B, written  $A \leq_m B$ 

if there is a computable function  $f: \Sigma^* \to \Sigma^*$  such that for all strings  $w \in \Sigma^*$ , we have  $w \in A \Leftrightarrow f(w) \in B$ 

# Mapping Reductions: Implications

Theorem:

If  $A \leq_m B$  and B is decidable (resp. recognizable), then A is also decidable (resp. recognizable)

#### **Corollary:**

If  $A \leq_{m} B$  and A is undecidable (resp. unrecognizable), then B is also undecidable (resp. unrecognizable)

Example: Another reduction to  $EQ_{TM}$   $EQ_{TM} = \{\langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$ Theorem:  $A_{TM} \leq_m EQ_{TM}$ Proof: The following TM N computes the reduction f:

What should the inputs and outputs to f be?

- a) f should take as input a pair  $\langle M_1, M_2 \rangle$  and output a pair  $\langle M, w \rangle$
- b) f should take as input a pair  $\langle M, w \rangle$  and output a pair  $\langle M_1, M_2 \rangle$
- c) f should take as input a pair  $\langle M_1, M_2 \rangle$  and either accept or reject
- d) f should take as input a pair  $\langle M, w \rangle$  and either accept or reject

Example: Another reduction to  $EQ_{TM}$   $EQ_{TM} = \{\langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$ Theorem:  $A_{TM} \leq_m EQ_{TM}$ Proof: The following TM N computes the reduction f:

On input  $\langle M, w \rangle$ :

1. Construct TMs  $M_1$ ,  $M_2$  as follows:  $M_1$  = "On input x,  $M_2$  = "On input x,

#### 2. Output $\langle M_1, M_2 \rangle$

# Consequences of $A_{\rm TM} \leq_{\rm m} EQ_{\rm TM}$

1. Since  $A_{TM}$  is undecidable,  $EQ_{TM}$  is also undecidable

2.  $A_{\text{TM}} \leq_{\text{m}} EQ_{\text{TM}}$  implies  $\overline{A_{\text{TM}}} \leq_{\text{m}} \overline{EQ_{\text{TM}}}$ Since  $\overline{A_{\text{TM}}}$  is unrecognizable,  $\overline{EQ_{\text{TM}}}$  is unrecognizable  $EQ_{TM}$  itself is also unrecognizable  $EQ_{TM} = \{\langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$ Theorem:  $\overline{A_{TM}} \leq_m EQ_{TM}$  hence  $EQ_{TM}$  is unrecognizable Proof: The following TM computes the reduction:

On input  $\langle M, w \rangle$ :

- 1. Construct TMs  $M_1$ ,  $M_2$  as follows:
  - $M_1$  = "On input x,
    - 1. Ignore *x*
    - 2. Run *M* on input *w*
    - 3. If *M* accepts, accept. Otherwise, reject."
- 2. Output  $\langle M_1, M_2 \rangle$

M<sub>2</sub> = "On input x, 1. Ignore x and reject"

# Computation History Method

# Problems in Language Theory

Apparent dichotomy:

- TMs seem to be able to solve problems about the power of weaker computational models (e.g., DFAs)
- TMs can't solve problems about the power of TMs themselves

Question: Are there undecidable problems that do not involve TM descriptions?

| A <sub>DFA</sub>         | A <sub>TM</sub>         |
|--------------------------|-------------------------|
| decidable                | undecidable             |
| <b>E</b> <sub>DFA</sub>  | <b>E</b> <sub>TM</sub>  |
| decidable                | undecidable             |
| <b>EQ</b> <sub>DFA</sub> | <b>EQ</b> <sub>TM</sub> |
| decidable                | undecidable             |

# Linear Bounded Automata (LBA)

A linear bounded automaton (LBA) is a TM variant with a bounded tape. The number of tape cells is the length of the input.



#### Intermediate in power between DFAs and TMs: Regular langs. $\subsetneq$ SPACE $(n) \subsetneq$ Turing-recognizable langs.

# Configurations

A configuration is a string uqv where  $q \in Q$  and  $u, v \in \Gamma^*$ 

- Tape contents = uv
- Current state = q
- Tape head on first symbol of v

```
Ex. 101q_50111 ⊔
```



# Computing with Configurations

A sequence of configurations  $C_0, \ldots, C_\ell$  is an accepting computation history for TM (or LBA) M on input w if

- 1.  $C_0$  is the start configuration  $q_0 w_1 \dots w_n$
- 2. Every  $C_{i+1}$  legally follows from  $C_i$
- 3.  $C_{\ell}$  is an accepting configuration

Rejecting computation history: Same thing, but  $C_{\ell}$  is a rejecting configuration

If M loops on w, there is no accepting or rejecting computation history

# **Counting Configurations**



How many distinct configurations are possible for an LBA with k states, a symbols in its tape alphabet, and a tape of length n?

a. kan

b. k + a + n

c. *ka*<sup>n</sup>

d.  $kna^n$ 

### LBA Halting

Theorem: Let B be an LBA with k states and a symbols in its tape alphabet. Then B halts on input w if and only if B halts on input w within  $kna^n$  steps.

Proof:

# Deciding $A_{\text{LBA}}$

 $A_{\text{LBA}} = \{\langle B, w \rangle \mid B \text{ is an LBA that accepts input } w\}$ Theorem:  $A_{\text{LBA}}$  is decidable Proof: The following TM decides  $A_{\text{LBA}}$ : On input  $\langle B, w \rangle$ :



2. If simulation accepts, accept.

If simulation rejects or has not yet halted, reject.



### LBAs can "check" TMs



LBAs are not powerful enough to perform general TM computations themselves.

But they can *check* the computation of a general TM M on input w

B = "On input  $x = \langle C_0, C_1, \dots, C_\ell \rangle$  a sequence of configs.:

Accept if all of the following hold, and reject otherwise:

- 1.  $C_0$  is the starting configuration of M on w,
- 2. Every  $C_{i+1}$  legally follows from  $C_i$ , and
- 3.  $C_{\ell}$  is an accepting configuration"

#### What is the language of *B*?

### **Computation History Method**

Reduction from the undecidable language  $A_{TM}$  to a language L using the following idea:

Given an input  $\langle M, w \rangle$  to  $A_{TM}$ , the ability to solve L enables checking the existence of an accepting computation history for M on w

Can be used to prove undecidability of  $E_{\text{LBA}}$ ,  $ALL_{\text{CFG}}$ , Post Correspondence Problem, first-order logic ...

# $E_{\text{LBA}}$ is unrecognizable

 $E_{\text{LBA}} = \{\langle B \rangle \mid B \text{ is an LBA recognizing } \emptyset\}$ Theorem:  $\overline{A_{\text{TM}}} \leq_{\text{m}} E_{\text{LBA}}$  hence  $E_{\text{LBA}}$  is unrecognizable Proof: The following TM computes the reduction: On input  $\langle M, w \rangle$ :

1. Construct LBA *B* as follows:

 $B = \text{``On input } x = \langle C_0, C_1, \dots, C_\ell \rangle \text{ a sequence of configs.:}$ Accept if x is an accepting computation history of M on w. Otherwise, reject.

2. Output  $\langle B \rangle$ .





# Recap of LBAs

#### LBAs are simple:

- Can determine whether an LBA halts on a given input by checking if it repeats a configuration
- Implies  $A_{\text{LBA}}$  is decidable

#### LBAs are powerful:

- An LBA can check the computation of a general TM on a given input
- Implies  $E_{\text{LBA}}$  is undecidable

# Problems in Language Theory

| <b>A<sub>DFA</sub></b>   | A <sub>LBA</sub>         | A <sub>TM</sub>         |
|--------------------------|--------------------------|-------------------------|
| decidable                | decidable                | undecidable             |
| <b>E</b> <sub>DFA</sub>  | <b>E</b> <sub>LBA</sub>  | <b>E</b> <sub>TM</sub>  |
| decidable                | undecidable              | undecidable             |
| <b>EQ</b> <sub>DFA</sub> | <b>EQ</b> <sub>LBA</sub> | <b>EQ</b> <sub>TM</sub> |
| decidable                | undecidable              | undecidable             |

Undecidable problems outside language theory

Post Correspondence Problem (PCP):

Domino: 
$$\left\lfloor \frac{a}{ab} \right\rfloor$$
. Top and bottom are strings.  
Input: Collection of dominos.

$$\begin{bmatrix} aa \\ aba \end{bmatrix}, \begin{bmatrix} ab \\ aba \end{bmatrix}, \begin{bmatrix} ba \\ aa \end{bmatrix}, \begin{bmatrix} abab \\ b \end{bmatrix}$$

Match: List of some of the input dominos (repetitions allowed) where top = bottom

$$\begin{bmatrix} ab \\ aba \end{bmatrix}, \begin{bmatrix} aa \\ aba \end{bmatrix}, \begin{bmatrix} ba \\ aa \end{bmatrix}, \begin{bmatrix} aa \\ aba \end{bmatrix}, \begin{bmatrix} abab \\ b \end{bmatrix}$$

Problem: Does a match exist?

This is undecidable

CS332 - Theory of Computation