BU CS 332 – Theory of Computation

Lecture 23:

NP-completeness

Reading:

Sipser Ch 7.4-7.5

The 5PM (5/6)

Mark Bun April 21, 2021

Last time: Two equivalent definitions of NP

1) NP is the class of languages decidable in polynomial time on a nondeterministic TM

$$NP = \bigcup_{k=1}^{\infty} NTIME(n^k)$$

2) A polynomial-time verifier for a language L is a deterministic poly(|w|)-time algorithm V such that $w \in L$ iff there exists a certificate c such that $V(\langle w, c \rangle)$ accepts

Theorem: A language $L \in NP$ iff there is a polynomial-time verifier for L

NP-Completeness

Understanding the P vs. NP question

Believe $P \neq NP$, but very far from proving it

Question 1: How can studying specific computational problems help us get a handle on resolving P vs. NP?

Question 2: What would $P \neq NP$ allow us to conclude about specific problems we care about?

Idea: Identify the "hardest" problems in NP

Find $L \in NP$ such that $L \in P$ iff P = NP

Recall: Mapping reducibility

Definition:

A function $f: \Sigma^* \to \Sigma^*$ is computable if there is a TM M which, given as input any $w \in \Sigma^*$, halts with only f(w) on its tape.

Definition:

Language A is mapping reducible to language B, written $A \leq_{\mathrm{m}} B$

if there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all strings $w \in \Sigma^*$, we have $w \in A \iff f(w) \in B$

Polynomial-time reducibility

Definition:

A function $f: \Sigma^* \to \Sigma^*$ is polynomial-time computable if there is a polynomial-time TM M which, given as input any $w \in \Sigma^*$, halts with only f(w) on its tape.

Definition:

Language A is polynomial-time reducible to language B, written

$$A \leq_{p} B$$

if there is a polynomial-time computable function $f: \Sigma^* \to \Sigma^*$ such that for all strings $w \in \Sigma^*$, we have $w \in A \iff f(w) \in B$

Implications of poly-time reducibility A in B and B decidable then A decidable

Theorem: If $A \leq_{p} B$ and $B \in P$, then $A \in P$

Proof: Let M decide B in poly time, and let f be a polytime reduction from A to B. The following TM decides A

Is NP closed under poly-time reductions?

If $\overline{A} \leq_{p} B$ and B is in NP, does that mean A is also in NP?

- a) Yes, the same proof works using NTMs instead of TMs
- b) No, because the new machine is an NTM instead of a deterministic TM
- No, because the new NTM may not run in polynomial time
- d) No, because the new NTM may accept some inputs it should reject
- e) No, because the new NTM may reject some inputs it should accept

NP-completeness

Definition: A language B is NP-complete if

- 1) $B \in NP$, and
- 2) Every language $A \in NP$ is poly-time reducible to B, i.e., $A \leq_{D} B$ ("B is NP-hard")

Implications of NP-completeness

Theorem: Suppose *B* is NP-complete.

Then $B \in P$ iff P = NP

Proof:

Implications of NP-completeness

Theorem: Suppose *B* is NP-complete.

Then $B \in P$ iff P = NP

Consequences of *B* being NP-complete:

- 1) If you want to show P = NP, you just have to show $B \in P$
- 2) If you want to show $P \neq NP$, you just have to show $B \notin P$
- 3) If you already believe $P \neq NP$, then you believe $B \notin P$

Cook-Levin Theorem and NP-Complete Problems

Do NP-complete problems exist?

Theorem: $TMSAT = \{\langle N, w, 1^t \rangle \mid NTM \ N \text{ accepts input } w \text{ within } t \text{ steps} \} \text{ is NP-complete}$

Proof sketch: 1) $TMSAT \in NP$: Certificate = t nondeterministic guesses made by N, verifier checks that N accepts w within t steps under those guesses.

2) TMSAT is NP-hard: Let $L \in NP$ be decided by NTM N running in time T(n). The following poly-time TM shows $L \leq_p TMSAT$:

"On input w (an instance of L):
Output $\langle N, w, 1^{T(|w|)} \rangle$."

Cook-Levin Theorem

Theorem: SAT (Boolean satisfiability) is NP-complete

"Proof": Already know $SAT \in NP$. (Much) harder direction: Need to show every problem in NP reduces to SAT

Stephen A. Cook (1971)

Leonid Levin (1973)

New NP-complete problems from old

Lemma: If $A \leq_p B$ and $B \leq_p C$, then $A \leq_p C$ (poly-time reducibility is <u>transitive</u>)

Theorem: If $C \in NP$ and $B \leq_p C$ for some NP-complete language B, then C is also NP-complete

New NP-complete problems from old

All problems below are NP-complete and hence poly-time reduce to one another!

3SAT (3-CNF Satisfiability)

Definitions:

- A literal either a variable of its negation x_5 , $\overline{x_7}$
- A clause is a disjunction (OR) of literals Ex. $x_5 \vee \overline{x_7} \vee x_2$
- A 3-CNF is a conjunction (AND) of clauses where each clause contains exactly 3 literals

Ex.
$$C_1 \wedge C_2 \wedge ... \wedge C_m =$$

$$(x_5 \vee \overline{x_7} \vee x_2) \wedge (\overline{x_3} \vee x_4 \vee x_1) \wedge \cdots \wedge (x_1 \vee x_1 \vee x_1)$$

$$3SAT = \{\langle \varphi \rangle | \varphi \text{ is a satisfiable } 3 - \text{CNF} \}$$

$$= \{\langle \varphi \rangle | \varphi \text{ is a satisfiable } 3 - \text{CNF} \}$$

$$= \{\langle \varphi \rangle | \varphi \text{ is a satisfiable } 3 - \text{CNF} \}$$

$$= \{\langle \varphi \rangle | \varphi \text{ is a satisfiable } 3 - \text{CNF} \}$$

$$= \{\langle \varphi \rangle | \varphi \text{ is a satisfiable } 3 - \text{CNF} \}$$

3*SAT* is NP-complete

Theorem: 3*SAT* is NP-complete

Proof idea: 1) 3*SAT* is in NP (why?)

2) Show that
$$SAT \leq_p 3SAT \sim$$

2) Show that
$$SAT \leq_p 3SAT$$
 Suffices by transitually a suffice work 25AT NP-had \Leftrightarrow Y A EMP, A \leq p 3SAT Suffices by transitually of \leq p

Your classmate suggests the following reduction from SAT to 3SAT: "On input φ , a 3-CNF formula (an instance of 3SAT), output φ , which is already an instance of SAT." Is this reduction correct?

- Yes, this is a poly-time reduction from SAT to 3SAT
- No, because φ is not an instance of the SAT problem
- No, the reduction does not run in poly time
- No, this is a reduction from 3SAT to SAT; it goes in the wrong direction

3SAT is NP-complete

Theorem: 3SAT is NP-complete

Proof idea: 1) 3SAT is in NP (why?)

2) Show that $SAT \leq_p 3SAT$

Idea of reduction: Give a poly-time algorithm converting an arbitrary formula φ into a 3CNF ψ such that φ is satisfiable iff ψ is satisfiable

Converting φ to ψ

Independent Set

An **independent set** in an undirected graph G is a set of vertices that includes at most one endpoint of every edge.

INDEPENDENT - SET

= $\{\langle G, k \rangle | G \text{ is an undirected graph containing an independent set with } \geq k \text{ vertices} \}$

- Is there an independent set of size ≥ 6 ?
 - Yes.

independent set

- Is there an independent set of size ≥ 7 ?
 - No.

Independent Set is NP-complete

- 1) $INDEPENDENT SET \in NP$
- 2) Reduce $3SAT \leq_{p} INDEPENDENT SET$

Proof of 1) The following gives a poly-time verifier for

INDEPENDENT - SET

· Ady re correctes

Certificate: Vertices v_1, \dots, v_k

· Analyze ventine

Verifier:

"On input $\langle G, k; v_1, ..., v_k \rangle$, where G is a graph, k is a natural number,

- 1. Check that v_1 , ... v_k are distinct vertices in G
- 2. Check that there are no edges between the v_i 's."

Independent Set is NP-complete

- 1) $INDEPENDENT SET \in NP$
- 2) Reduce $3SAT \leq_{p} INDEPENDENT SET$

Proof of 2) The following TM computes a poly-time reduction.

"On input $\langle \varphi \rangle$, where φ is a 3CNF formula,

- 1. Construct graph G from φ
 - G contains 3 vertices for each clause, one for each literal.
 - Connect 3 literals in a clause in a triangle.
 - Connect every literal to each of its negations.
- 2. Output $\langle G, k \rangle$, where k is the number of clauses in φ ."

Example of the reduction

$$\varphi = (\overline{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee x_2 \vee x_3)$$

Proof of correctness for reduction

Let k = # clauses and l = # literals in φ

Correctness: φ is satisfiable iff G has an independent set of size k

 \implies Given a satisfying assignment, select one true literal from each triangle. This is an independent set of size k

 \leftarrow Let S be an independent set in G of size k

- S must contain exactly one vertex in each triangle
- Set these literals to true, and set all other variables in an arbitrary way
- Truth assignment is consistent and all clauses are satisfied

Runtime: $O(k + l^2)$ which is polynomial in input size