Lecture 24:

- More NP-completeness
- Space complexity (?)

Reading:
Sipser Ch 7.4-7.5, 8.1-8.2
Polynomial-time reducibility

Definition:
A function $f : \Sigma^* \rightarrow \Sigma^*$ is polynomial-time computable if there is a polynomial-time TM M which, given as input any $w \in \Sigma^*$, halts with only $f(w)$ on its tape.

Definition:
Language A is polynomial-time reducible to language B, written

$$A \leq_p B$$

if there is a polynomial-time computable function $f : \Sigma^* \rightarrow \Sigma^*$ such that for all strings $w \in \Sigma^*$, we have $w \in A \iff f(w) \in B$
NP-completeness

“The hardest languages in NP”

Definition: A language B is NP-complete if

1) $B \in \text{NP}$, and

2) Every language $A \in \text{NP}$ is poly-time reducible to B, i.e., $A \leq_p B$ ("B is NP-hard")
The usual way to prove NP-completeness

Theorem:

If

1) $C \in \text{NP}$, and
2) There is an NP-complete language B such that $B \leq_p C$

then C is NP-complete.
Some general reduction strategies

• Reduction by simple equivalence
 Ex. $IND - SET \leq_p VERTEX - COVER$
 $VERTEX - COVER \leq_p IND - SET$

• Reduction from special case to general case
 Ex. $VERTEX - COVER \leq_p SET - COVER$
 $3SAT \leq_p SAT$

• “Gadget” reductions
 Ex. $SAT \leq_p 3SAT$
 $3SAT \leq_p IND - SET$
3SAT (3-CNF Satisfiability)

Definitions:

- A literal either a variable of its negation \(x_5, \overline{x_7} \)
- A clause is a disjunction (OR) of literals \(\text{Ex. } x_5 \lor \overline{x_7} \lor x_2 \)
- A 3-CNF is a conjunction (AND) of clauses where each clause contains exactly 3 literals

 \[C_1 \land C_2 \land \ldots \land C_m = (x_5 \lor \overline{x_7} \lor x_2) \land (\overline{x_3} \lor x_4 \lor x_1) \land \ldots \land (x_1 \lor x_1 \lor x_1) \]

\[3SAT = \{ \langle \varphi \rangle \mid \varphi \text{ is a satisfiable } 3 - \text{CNF} \} \]

Last time: 3SAT is NP-complete
Independent Set

An independent set in an undirected graph G is a set of vertices that includes at most one endpoint of every edge.

$$IND - SET = \{\langle G, k \rangle | G \text{ is an undirected graph containing an independent set with } \geq k \text{ vertices} \}$$

Which of the following are independent sets in this graph?

a) $\{1\}$
b) $\{1, 5\}$
c) $\{2, 3, 6\}$
d) $\{3, 4, 6\}$
Independent Set is NP-complete

1) \(IND - SET \in NP \)
2) Reduce \(3SAT \leq_p IND - SET \)

Proof of 1) The following gives a poly-time verifier for \(IND - SET \)

Certificate: Vertices \(v_1, \ldots, v_k \)

Verifier:

“On input \(\langle G, k; v_1, \ldots, v_k \rangle \), where \(G \) is a graph, \(k \) is a natural number,
1. Check that \(v_1, \ldots v_k \) are distinct vertices in \(G \)
2. Check that there are no edges between the \(v_i \)'s.”
Independent Set is NP-complete

1) \(IND - SET \in \text{NP} \)

2) Reduce \(3SAT \leq_p IND - SET \)

Proof of 2) The following TM computes a poly-time reduction.

“On input \(\langle \varphi \rangle \), where \(\varphi \) is a 3CNF formula,

1. Construct graph \(G \) from \(\varphi \)
 - \(G \) contains 3 vertices for each clause, one for each literal.
 - Connect 3 literals in a clause in a triangle.
 - Connect every literal to each of its negations.

2. Output \(\langle G, k \rangle \), where \(k \) is the number of clauses in \(\varphi \).”
Example of the reduction

\[\varphi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_3) \]

\[G = \]

\[n = 3 \]

Output: \(\langle G, n \rangle \)

\[\text{Ex. } \Rightarrow x_1 = 0, x_2 = 0, x_3 = 1 \]

is a sat. ass'nt \(\Rightarrow \) ind set of size 3

\[\Leftrightarrow S = D's \]

\[x_2 = 1 \]

\[x_3 = 1 \]

is a sat. ass'nt

\[x_1 = 0 \]
Proof of correctness for reduction

Let \(k = \# \) clauses and \(l = \# \) literals in \(\varphi \)

Correctness: \(\varphi \) is satisfiable iff \(G \) has an independent set of size \(k \)

\[\Rightarrow \text{Given a satisfying assignment, select one true literal from each triangle. This is an independent set of size } k \]

\[\Leftarrow \text{Let } S \text{ be an independent set in } G \text{ of size } k \]

- \(S \) must contain exactly one vertex in each triangle
- Set these literals to true, and set all other variables arbitrarily
- Truth assignment is consistent and all clauses are satisfied

Runtime: \(O(k + l^2) \) which is polynomial in input size
Some general reduction strategies

• Reduction by simple equivalence
 Ex. \(\text{IND} - \text{SET} \leq_p \text{VERTEX} - \text{COVER} \)
 \(\text{VERTEX} - \text{COVER} \leq_p \text{IND} - \text{SET} \)

• Reduction from special case to general case
 Ex. \(\text{VERTEX} - \text{COVER} \leq_p \text{SET} - \text{COVER} \)
 \(3\text{SAT} \leq_p \text{SAT} \)

• “Gadget” reductions
 Ex. \(\text{SAT} \leq_p 3\text{SAT} \)
 \(3\text{SAT} \leq_p \text{IND} - \text{SET} \)
Vertex Cover

Given an undirected graph \(G \), a vertex cover in \(G \) is a subset of nodes which includes at least one endpoint of every edge.

\[
\text{VERTEX } \rightarrow \text{ COVER } = \{ \langle G, k \rangle \mid \text{\(G \) is an undirected graph which has a vertex cover with } \leq k \text{ vertices} \}
\]

Which of the following are vertex covers in this graph?

a) \(\{1\} \)

b) \(\{1, 6\} \)

c) \(\{1, 2, 5\} \)

d) \(\{1, 2, 5, 6\} \)
Independent Set and Vertex Cover

Claim. S is an independent set iff $V \setminus S$ is a vertex cover.

\Rightarrow Let S be any independent set.
- Consider an arbitrary edge (u, v).
- S is independent $\Rightarrow u \not\in S$ or $v \not\in S$ $\Rightarrow u \in V \setminus S$ or $v \in V \setminus S$.
- Thus, $V \setminus S$ covers (u, v).

\Leftarrow Let $V \setminus S$ be any vertex cover.
- Consider two nodes $u \in S$ and $v \in S$.
- Then $(u, v) \not\in E$ since $V \setminus S$ is a vertex cover.
- Thus, no two nodes in S are joined by an edge $\Rightarrow S$ is an independent set.
Theorem. \(\text{IND-SET} \leq_p \text{VERTEX-COVER} \).

What do we need to do to prove this theorem?

a) Construct a poly-time nondet. TM deciding IND-SET

b) Construct a poly-time deterministic TM deciding IND-SET

c) Construct a poly-time nondet. TM mapping instances of IND-SET to instances of VERTEX-COVER

d) **Construct a poly-time deterministic TM** mapping instances of IND-SET to instances of VERTEX-COVER

e) Construct a poly-time nondet. TM mapping instances of VERTEX-COVER to instances of IND-SET

f) Construct a poly-time deterministic TM mapping instances of VERTEX-COVER to instances of IND-SET
INDEPENDENT SET reduces to VERTEX COVER

Theorem. IND-SET \(\leq_p \) VERTEX-COVER.

Proof. The following TM computes the reduction.

“On input \(\langle G, k \rangle \), where \(G \) is an undirected graph and \(k \) is an integer,

1. Output \(\langle G, n - k \rangle \), where \(n \) is the number of nodes in \(G \).

Correctness:

- \(G \) has an independent set of size at least \(k \) iff it has a vertex cover of size at most \(n - k \).

Runtime:

- Reduction runs in linear time.
Theorem. VERTEX-COVER \(\leq_p \) IND-SET

Proof. The following TM computes the reduction.

“On input \(\langle G, k \rangle \), where \(G \) is an undirected graph and \(k \) is an integer,

1. Output \(\langle G, n - k \rangle \), where \(n \) is the number of nodes in \(G \).”

Correctness:

• \(G \) has a vertex cover of size at most \(k \) iff it has an independent set of size at least \(n - k \).

Runtime:

• Reduction runs in linear time.
A Brief Tour of Space (Complexity)
Space analysis

Space complexity of a TM (algorithm) = maximum number of tape cells it uses on a worst-case input

Formally: Let $f : \mathbb{N} \rightarrow \mathbb{N}$. A TM M runs in space $f(n)$ if on every input $w \in \Sigma^*$, M halts on w using at most $f(n)$ cells.

For nondeterministic machines: Let $f : \mathbb{N} \rightarrow \mathbb{N}$. An NTM N runs in space $f(n)$ if on every input $w \in \Sigma^*$, N halts on w using at most $f(n)$ cells on every computational branch.
Space complexity classes

Let $f : \mathbb{N} \to \mathbb{N}$

A language $A \in \text{SPACE}(f(n))$ if there exists a basic single-tape (deterministic) TM M that
1) Decides A, and
2) Runs in space $O(f(n))$

A language $A \in \text{NSPACE}(f(n))$ if there exists a single-tape nondeterministic TM N that
1) Decides A, and
2) Runs in space $O(f(n))$
Space vs. Time

\[
\text{TIME}(f(n)) \subseteq \text{NTIME}(f(n)) \\
\subseteq \text{SPACE}(f(n)) \subseteq \text{NSPACE}(f(n))
\]

How about the opposite direction? Can low-space algorithms be simulated by low-time algorithms?

Theorem: A TM running in space \(f(n) \) also runs in time \(2^{O(f(n))} \)

\[
\text{SPACE}(f(n)) \subseteq \text{TIME}(2^{O(f(n))})
\]
Savitch’s Theorem: Deterministic vs. Nondeterministic Space

Theorem: Let f be a function with $f(n) \geq \log n$. Then $\text{NSPACE}(f(n)) \subseteq \text{SPACE}\left((f(n))^2\right)$.

$\text{NSPACE}(n^2) \subseteq \text{SPACE}(n^4)$
Complexity class PSPACE

Definition: PSPACE is the class of languages decidable in polynomial space on a basic single-tape (deterministic) TM

$$\text{PSPACE} = \bigcup_{k=1}^{\infty} \text{SPACE}(n^k)$$

Definition: NPSPACE is the class of languages decidable in polynomial space on a single-tape (nondeterministic) TM

$$\text{NPSPACE} = \bigcup_{k=1}^{\infty} \text{NSPACE}(n^k)$$

$$\text{PSPACE} = \text{NPSPACE} \quad \text{(via Savitch)}$$
Relationships between complexity classes

1. $P \subseteq NP \subseteq PSPACE \subseteq EXP$
 since $SPACE(f(n)) \subseteq TIME(2^{O(f(n))})$

2. $P \neq EXP$
 (via time hierarchy)

Which containments in (1) are proper?

Unknown!
Course Evaluations

bu.campuslabs.com/courseeval