
CS 332: Theory of Computation Prof. Mark Bun
Boston University January 25, 2024

Homework 1 – Due Thursday, February 1, 2024 at 11:59 PM

Reminder Collaboration is permitted, but you must write the solutions by yourself without assis-
tance, and be ready to explain them orally to the course staff if asked. You must also identify your
collaborators and write “Collaborators: none” if you worked by yourself. Getting solutions from out-
side sources such as the Web or students not enrolled in the class is strictly forbidden. Collaboration
is not allowed on problems marked “INDIVIDUAL.”

Problems There are 6 required problems and one bonus problem. Problems 1-5 are to be turned in
via Gradescope. Problem 6 will be autograded using AutomataTutor.

1. For each of the following languages, (i) give a plain English description of the language, (ii) describe
the decision problem corresponding to that language (i.e., “Given a string ... determine whether
...”), and (iii) give two examples of strings in the language and two examples of strings that are in
Σ∗ but are outside the language.

(a) L1 = {0x1 | x ∈ {0, 1}∗} where the alphabet Σ = {0, 1}
(b) L2 = {w ∈ {a, b}∗ | |w| ≥ 5} ∩ {xabbay | x, y ∈ {a, b}∗} where the alphabet Σ = {a, b}

2. For each of the following languages, (i) describe the language using set-builder notation and
union/intersection/complement/reverse/concatenation operations (the notation used in Problem 1),
(ii) describe the decision problem corresponding to that language, and (iii) give two examples of
strings in the language and two examples of strings that are in Σ∗ but are outside the language.

(a) L3 = the set of all strings over alphabet {a, b, c} that are palindromes (read the same forwards
and backwards) or that end with c. (For example, bacab and cabbac are palindromes.)

(b) L4 = the set of all strings over alphabet {1, 2, . . . , 9} whose length is divisible by s, where s is
the first symbol of the string.

3. Which of the following statements are true or false, for all alphabets Σ? For each, provide either a
proof or a counterexample.

(a) INDIVIDUAL: For all strings x, y, z ∈ Σ∗, we have |xRy ◦ ε ◦ z| = |x| + |y| + |z|. (Recall
that ◦ denotes concatenation.)

(b) For all languages L1, L2 ⊆ Σ∗, we have (L1 ∩ L2)
R = LR

1 ∩ LR
2 .

(c) For every finite language L ⊆ Σ∗, we have |L ◦ L| = |L|2.
(d) For all languages L1, L2, L3 ⊆ Σ∗, we have L1 ∪ (L2 ◦ L3) = (L1 ∪ L2) ◦ (L1 ∪ L3).

4. Let L be a language consisting of strings over an alphabet Σ. Define

Prefix(L) = {x ∈ Σ∗ | xy ∈ L for some y ∈ Σ∗}.

That is, Prefix(L) consists of all (possibly empty) strings which appear as prefixes of strings in L.

1

(a) Let A = {00, 001, 1011}. What is Prefix(A)?

(b) Let B = {abn | n ≥ 0}. What is Prefix(B)?

(c) Prove that if L is a finite language, then Prefix(L) is also finite.

5. Consider the following state diagram of a DFA M using alphabet Σ = {A,B}.

q0start

q1 q2

q3 q4

A

B

A

A

B

B
A

B

B

A

(a) What is the start state of M?

(b) What is the set of accept states of M?

(c) Give a formal description of the machine M (i.e., as a 5-tuple).

(d) What sequence of states does the machine go through on input ABBAB?

(e) Does the machine accept the string ABBAA?

(f) Give a simple description of language recognized by M . (Either plain English or set-builder
notation is fine.)

6. This problem will be autograded using AutomataTutor. Visit http://automatatutor.com/ and
click on “Sign Up.” Make an account using your name and @bu.edu email address (it is important
for recording grades that the information for your account match the information on the course list
provided by the registrar). We’ll provide more specific information about how to register for this
tool on Piazza.

Give state diagrams of DFAs with as few states as you can recognizing the following languages.
You may assume that the alphabet in each case is Σ = {0, 1}.

(a) L1 = {w | w contains the substring 100}.
(b) L2 = {w | w is any string except for 1001}.
(c) L3 = {w | every even position of w is 0}.

7. Bonus Problem. In this problem, you’ll explore how to formally define and analyze properties
of strings. Let Σ be an alphabet. A string over alphabet Σ is defined recursively as follows. It

2

http://automatatutor.com/
@bu.edu

is either the empty string ε (base case) or takes the form ax where a ∈ Σ and x is itself a string
(recursive case). The length of the string x can then be defined as follows:

|x| =

{
0 if x = ε

1 + |z| if x = az for a ∈ Σ and z ∈ Σ∗.

Similarly, the concatenation of two strings x, y can be defined as

xy =

{
y if x = ε

a(zy) if x = az for a ∈ Σ and z ∈ Σ∗.

These definitions let us give inductive proofs of properties of strings. For instance, consider the
following claim, which says that the length of the concatenation of two strings is the sum of the
lengths of those strings.

Claim. For any two strings x, y, we have |xy| = |x|+ |y|.

To prove this, let x and y be arbitrary strings. We will prove this by induction on the length
n = |x|. As our base case, suppose n = 0. Then x = ε, so

|xy| = |εy| (assumption on x)

= |y| (definition of concatenation)

= |ε|+ |y| (definition of length)

= |x|+ |y| (assumption on x)

as we wanted. Now assume as our inductive hypothesis that the claim is true for length n; we want
to show it is true for length n+ 1. In this case, we have x = az for some string z of length n. So

|xy| = |a(zy)| (definition of concatenation)

= 1 + |zy| (definition of length)

= 1 + |z|+ |y| (inductive hypothesis)

= |x|+ |y| (definition of length).

(a) Given a string x ∈ {0, 1}∗, let sort(x) denote the string obtained by sorting the characters of
x so that all 0’s appear before all 1’s. For example, sort(10110) = 00111. Give a recursive
definition of the sort function along the lines of what we did with length above.

(b) Give an inductive proof that | sort(x)| = |x| for every string x ∈ {0, 1}∗.
(c) Prove that sort(sort(x)) = sort(x) for every string x ∈ {0, 1}∗. Hint: Instead of trying to prove

this directly by induction, it might be useful to introduce some auxiliary recursively-defined
functions and prove statements about those.

3

