CS 332: Theory of Computation Prof. Mark Bun
Boston University May 1, 2024

Homework 11 — Due Wednesday, May 1 at 11:59 PM

Reminder Collaboration is permitted, but you must write the solutions by yourself without assis-
tance, and be ready to explain them orally to the course staff if asked. You must also identify your
collaborators and write “Collaborators: none” if you worked by yourself. Getting solutions from out-
side sources such as the Web or students not enrolled in the class is strictly forbidden. Collaboration
is not allowed on problems marked “INDIVIDUAL.”

Note You may use various generalizations of the Turing machine model we have seen in class, such as
TMs with two-way infinite tapes, stay-put, or multiple tapes. If you choose to use such a generalization,
state clearly and precisely what model you are using. You may describe Turing machines at a
high-level on this assignment.

Problems There are |4 required problems.

1. (Poly-time Reductions) Assume P # NP. For each of the following, give a language (if it exists)
with the stated property. Explain why your language satisfies the given property, or explain why
no such language can exist.

(a) A <, SAT and A is NP-complete.

(b) SAT <, B and B is not NP-complete.
(c) SAT <, C and C is not NP-hard.

(d) D is both regular and NP-complete.

2. (NP-Completeness Mad-Libs) Given m BU Hub areas and a course catalog consisting of k
classes fulfilling those areas, you wish to determine whether there is a small set of courses that
will supply you with all of your Hub requirements. Specifically, each course ¢ = 1,..., k supplies
you with a set S; C [m] of Hub requirements. A wvalid course plan is a collection T of courses
that, taken together, supply you with all m Hub requirements: U;c7S; = [m]. Define the language
HUB = {(S1,...,Sk,r) | there exists a valid course plan T C [k] of size |T| < r}.

This problem will walk you through a proof that HU B is NP-complete.

(a) We'll first argue that HUB € NP by describing a poly-time verifier. A certificate is (i) .
On input (Si,..., Sk, r), the verifier checks that |T'| < r and that U;epS; = [m] and accepts if
and only if this is the case. (For brevity, we’re omitting the proof of correctness and runtime
analysis that should go here.)

Fill in the blank labeled (i) with a description of what a certificate for this problem should
look like.

(b) Now we will argue that HU B is NP-hard by giving a reduction showing VERTEX—-COV ER <,
HUB. (See page 312 of Sipser for discussion of this problem.) A vertex cover of a graph G
is a set of vertices T" such that every edge in the graph is incident to at least one vertex in 7.
The language VERTEX — COVER = {(G,r) | G has a vertex cover of size at most r}.
In the reduction described below, fill in the blank labeled (ii) with a description of what the
algorithm computing the reduction should output.



Algorithm: VERTEX-COVER to HUB Reduction
Input : (G,r) where G = (V,E) is a graph and r € N
1. Relabel the vertices and edges of the graph so that V = [k] and E = [m)].
2. Foreachi=1,...,k:
Let S; = {j € [m] | edge j is incident to vertex i}
3. Output (i) .

Your job is now done, but here are explanations of correctness and runtime for this reduction.

Correctness: If (G,r) € VERTEX —COV ER, then there exists a set T' of at most r vertices
such that every edge in the graph is incident to a member of T'. After relabeling, that means
T is a set of courses such that every requirement in [m| appears in at least one of the sets S,
so T is a valid course plan of size at most r. Conversely, if there is a valid course plan T of
size at most r in the instance of HU B produced, then T' corresponds to a set of vertices such
that every edge in G is incident to a member of 7', and hence (G,r) € VERTEX — COVER.
Runtime: Suppose for concreteness that we are working with the adjacency list representation
of G on a multi-tape. Inside the main loop of step 2, constructing each set S; takes time linear
in m, the number of edges of the graph. So overall, the algorithm runs in time O(km + log )
which is polynomial in the description length of the input.

3. (Popular Cliques) A popular clique in an undirected graph G = (V, E) is a set of vertices S such
that a) S is a clique, i.e., all vertices in S are adjacent to each other and b) for every vertex v € V,
there exists a vertex w € S such that v is adjacent to w. In the parlance of high school social
dynamics, a popular clique is a group of students who are all friends with each other, and for which
every student in the school is friends with at least one member of the clique.

Define the language PC = {(G, k) | undirected graph G = (V, E) contains a popular clique with
at least k vertices}.

(a) Show that PC € NP. For brevity, you can omit the proof of correctness and runtime of your
NTM or verifier, as long as those are reasonably clear.

(b) Show that CLIQUE <,, PC and use this to conclude that PC' is NP-complete. Describe your
reduction, explain why it is correct, and analyze its runtime.

4. (Systems of linear inequalities) A linear inequality I over variables x1, ...,z is an inequality of
the form cix1 + ... cpxp < b, where cy,...,c, and b are integers. For example, 5z1 —3zs + 23 < —1
is a linear inequality. A system of linear inequalities is a set {I1,..., Iy} of inequalities over the
same variables. Such a system has an boolean solution if one can assign boolean values (either 0 or
1) to all variables in such a way that all inequalities are satisfied.

Define the language BI = {(I1,...,I) | the system {I3,..., I,,} has a boolean solution}.

(a) Show that BI is in NP. For brevity, you can omit the proof of correctness and runtime of your
NTM or verifier, as long as those are reasonably clear.

(b) Show that 3SAT <,, BI and use this to conclude that BI is NP-complete. Describe your
reduction, explain why it is correct, and analyze its runtime.

5. (Bonus) In a directed graph, the indegree of a node is the number of incoming edges and the
outdegree of a node is the number of outgoing edges. Show that the following problem is NP-
complete. Given an undirected graph GG and a subset S of the nodes in G, determine whether it



possible to convert G to a directed graph by assigning directions to each of its edges so that every
node in S has indegree 0 or outdegree 0, and all remaining nodes in G’ have indegree at least 1.



