
CS 332: Theory of Computation Prof. Mark Bun
Boston University February 29, 2024

Homework 5 – Due Friday, March 8 at 11:59 PM

Reminder Collaboration is permitted, but you must write the solutions by yourself without assis-
tance, and be ready to explain them orally to the course staff if asked. You must also identify your
collaborators and write “Collaborators: none” if you worked by yourself. Getting solutions from out-
side sources such as the Web or students not enrolled in the class is strictly forbidden. Collaboration
is not allowed on problems marked “INDIVIDUAL.”

Problems There are 5 required problems and one bonus problem. Problem 1 will have its own
dropbox on Gradescope where you can submit pseudocode and code as plain text files. Problems 2-5
can be submitted as a single PDF as usual.

1. (Programming TMs) Construct Turing machines that decide the following languages. That is,
the machines should always halt after a finite number of steps on every input, and accept a string
w if and only if w is in the given language. Implement your TMs in the following environment:
http://morphett.info/turing/turing.html. Your solution should contain:

(i) An implementation-level description of your code.

(ii) Code that we can copy from your submission and run directly on that website. (Please add
comments and make your code as readable as possible.)

Your TM should enter a state that is clearly marked “accept” or “reject” when it is done. The final
tape content does not matter; it does not need to draw an emoji or anything else on its tape.

(a) L1 = {w ∈ {0, 1}∗ | Every even position of w is a 0}.

Hint : You could solve this problem with a DFA. How would you simulate that DFA using a
TM?

(b) L2 = {0n1m | m,n ≥ 0 and m is a multiple of n}.

2. (Recognizability vs. Decidability) Recall the high-level description of a TM recognizer for the
language {⟨p⟩ | p is a k-variate integer polynomial and there exists x1, . . . , xk such that p(x1, . . . , xk) =
0} that we described in class.

Input : Encoding of k-variate polynomial p
1. For every possible setting of x1, . . . , xk to integer values:

2. Evaluate p(x1, . . . , xk). If it equals 0, accept.

Explain in a few sentences what is wrong about the following attempt to construct a TM decider
for the same language:

1

http://morphett.info/turing/turing.html


Input : Encoding of k-variate polynomial p
1. For every possible setting of x1, . . . , xk to integer values:

2. Evaluate p(x1, . . . , xk).

3. If any evaluation equals 0, accept. Otherwise, reject.

3. (Closure properties)

(a) Let Σ be a finite alphabet. For a string w = w1 . . . wn, where each wi ∈ Σ, define Rep(w) =
w1w1w2w2 . . . wnwn. That is, Rep(w) is the string obtained by repeating each character in w
one additional time. Given a language L ⊆ Σ∗, define the language Rep(L) = {Rep(w) | w ∈
L}.
Suppose L is decided by a Turing machineM . UsingM as a subroutine, give an implementation-
level description of a Turing machine N that decides Rep(L). Briefly explain in English what
N does and why it works. It may be useful to use a multi-tape TM to solve this problem.

(b) Are the decidable languages closed under the Rep operation? Are the Turing-recognizable
languages closed under the Rep operation? Explain your answers.

4. (Insert-only TM) An insert-only Turing machine (ITM) is the same as a basic (deterministic)
one-tape Turing machine, but instead of writing a new symbol to the current cell under the tape
head, it inserts a new cell with that symbol to the immediate left of the current cell. It can also
move the tape head while leaving the tape content unchanged.

Here are some examples of how an ITM could work.

� If an ITM is in configuration 867p309 and its transition function specifies δ(p, 3) = (q, 5, R),
then the next configuration will be 86753q09. (The ITM reads symbol 3, inserts symbol 5,
then moves to the right.)

� If an ITM is in configuration 867r309 and its transition function specifies δ(r, 3) = (s, 5, L),
then the next configuration will be 867s5309. (The ITM reads symbol 3, inserts symbol 5,
then moves to the left.)

� If an ITM is in configuration 867s5309 and its transition function specifies δ(s, 5) = (t, ∗, L),
then its next configuration will be 86t75309. Here, “writing” the ∗ symbol indicates that the
TM should move without modifying the tape.

(a) Modify Definition 3.3 in Sipser to give the formal definition of a insert-only TM. Most of it
should stay the same, but pay special attention to the syntax of the transition function (item
4), which should handle the special ∗ symbol that is not part of the tape alphabet.

(b) Show that insert-only TMs are no more powerful than basic TMs. That is, use an implementation-
level simulation argument to show that every language recognizable by an insert-only TM is
also Turing-recognizable.

(c) Show that insert-only TMs are at least as powerful as basic TMs. That is, use an implementation-
level simulation argument to show that every Turing-recognizable language is also recognizable
by an insert-only TM.

Hint: You may want to enlarge the tape alphabet of your ITM to include another special
symbol that signals it to ignore some of the tape content.

2



Parts (a) and (b) together show that insert-only TMs are equivalent to basic TMs: They exactly
recognize the class of Turing-recognizable languages.

5. (Nondeterministic TMs)

(a) To present a (directed) graph G as input to a Turing machine, one needs to provide a string en-
coding it, denoted by ⟨G⟩. (You can think of ⟨G⟩ as the result of applying a “toString” method
for the object G.) One convenient such encoding is the flattened adjacency matrix representa-
tion: A graph G on vertices 1, 2, . . . , n can be encoded as ⟨G⟩ = #w1#w2# . . .#wn# where
each wi ∈ {0, 1}n is a string such that wi,j = 1 if there is an edge from i to j in G, and wi,j = 0
if there is not an edge.

i. Draw the directed graph on 3 vertices that is encoded by #100#110#001#.

ii. What is the encoding ⟨H⟩ of the following graph H?

1 2

34

(b) A (directed) triangle in a directed graph consists of three vertices i, j, k, such that there is an
edge from i to j, an edge from j to k, and an edge from k to i. Thus, a digraph G contains a
triangle if and only if there exist i, j, k such that wi,j = wj,k = wk,i = 1 in its encoding.

Give an implementation-level description of a nondeterministic (multi-tape) TM deciding
the language L = {⟨G⟩ | there exists a triangle in directed graph G}. Briefly explain why
your construction works. It is, of course, possible to solve this problem with a deterministic
TM, but we’d like you to practice using nondeterminism, so your solution should make use of
the ability to “nondeterministically guess” in a meaningful way.

Hint: Recall that a nondeterministic TM is a decider if it halts on every input, on every
computation branch.

6. (Bonus problem) Let A be a Turing-recognizable language which is not decidable. (We will prove
later in the course that such languages exist.) Consider a TM M that recognizes A. Prove that
there are infinitely many input strings on which M loops forever. If you need to construct a TM
to solve this problem, you can give a high-level description.

3


