
CS 332: Theory of Computation Prof. Mark Bun
Boston University March 24, 2024

Homework 7 – Due Thursday, March 28 at 11:59 PM

Reminder Collaboration is permitted, but you must write the solutions by yourself without assis-
tance, and be ready to explain them orally to the course staff if asked. You must also identify your
collaborators and write “Collaborators: none” if you worked by yourself. Getting solutions from out-
side sources such as the Web or students not enrolled in the class is strictly forbidden. Collaboration
is not allowed on problems marked “INDIVIDUAL.”

Note You may use various generalizations of the Turing machine model we have seen in class, such as
TMs with two-way infinite tapes, stay-put, or multiple tapes. If you choose to use such a generalization,
state clearly and precisely what model you are using. You may describe Turing machines at a
high-level on this assignment.

1. (Uncountable sets)

(a) Aliens from the planet Fubar’d have (countably) infinite single-strand DNA sequences from
the set of nucleobases {A,C,G,T}. Let D be the set of all possible DNA sequences for residents
of Fubar’d, so D = {a1a2a3 . . . | ai ∈ {A,C,G,T}, i ∈ N}. Show that D is uncountable.

(b) A function f : N → N is rapidly growing if f(i + 1) ≥ 2f(i) for every i ∈ N. So f(1) =
3, f(2) = 9, f(3) = 27, f(4) = 81 . . . are the first few values of (what looks like) a rapidly
growing function f . But neither the function g where g(1) = 2, g(2) = 1, g(3) = 7, . . . nor the
function h where h(1) = 4, h(2) = 7, h(3) = 14 are rapidly growing.

Show that R = {f : N → N | f is rapidly growing}, the set of all rapidly growing functions, is
uncountable.

Hint: When you construct a function contradicting the diagonal, make sure that it is indeed
a member of R, i.e., that it is rapidly growing.

2. (Unrecognizability) Consider the explicit undecidable language described in Lecture 14: UD =
{⟨M⟩ | M is a TM that does not accept on input ⟨M⟩}. Show that this language is not Turing-
recognizable.

3. (Reduction Mad-Libs) A language B ⊆ {y, z}∗ is sleepy if every string in B contains “zzz” as
a substring. For example, the empty language, {zn | n ≥ 3}, and {ynzmyn | m ≥ 3, n ≥ 0} are
all sleepy, but {y, yz, yzz, yzzz} and {zn | n ≥ 0} are not sleepy. The language STM = {⟨M⟩ |
L(M) is sleepy} corresponds to the following computational problem: Given the encoding of a TM
M , does M recognize a sleepy language? This exercise will walk you through a proof, by reduction,
that STM is undecidable.

Assume, for the sake of contradiction, that STM is decidable by a TM R. That is, there is a TM R
that accepts ⟨M⟩ whenever L(M) is sleepy, and rejects ⟨M⟩ whenever L(M) is not sleepy. We will
use R to construct a new TM T that decides the (undecidable) language ATM.

(a) This proof is by reduction from a language A to a language B. What are the languages A and
B? (Make it clear in your solution which one is A and which one is B, since the order matters
a lot!)
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Algorithm 1: T (⟨M,w⟩)
Input : Encoding of a basic TM M over input alphabet {y, z}, string w ∈ {y, z}∗
1. Construct the following TM N :

N = “On input a string x ∈ {y, z}∗:
If x ̸= yy, reject.
Else, run M on input w. If it accepts, accept. Otherwise, reject.”

2. Run R on input ⟨N⟩. If it accepts, (i) . Otherwise, (ii) .

(b) Consider the machine N constructed inside algorithm T . If M accepts on input w, what is
the language L(N)? Is L(N) sleepy in this case?

(c) If M does not accept on input w, what is the language L(N)? Is L(N) sleepy in this case?

(d) Fill in the blanks labeled (i) and (ii) with accept or reject decisions to guarantee the following
conditions: If M accepts input w, then T accepts input ⟨M,w⟩, and if M does not accept
input w, then T rejects input ⟨M,w⟩. Use parts (b) and (c) to explain why these conditions
hold for your choices of how to fill in the blanks.

(Your job is done now, but you may want to keep reading to see the exciting conclusion of the proof.)
By part (d), the TM M exactly decides the language ATM. But this language is undecidable, which
is a contradiction. Hence our assumption that STM was decidable is false, so we conclude that STM

is an undecidable language.

4. (Fantastic TMs) A two-tape Turing machine M on input alphabet Σ = {a, b, . . . , z} is fantastic
if there exists a string w ∈ Σ∗ such that, on input w, the TM M has the substring “hobbit” appear
somewhere on its second tape when run on input w.1 Consider the problem of determining whether
(the encoding of) a TM M is fantastic.

(a) Formulate this problem as a language FANTTM. Caution: The only input to this computa-
tional problem is ⟨M⟩ for a TM M .

(b) Prove that the language FANTTM is undecidable.

Hint: Give a reduction from the undecidable language ATM. That is, you should assume for
the sake of contradiction that FANTTM is decidable. Then under this assumption, construct
a TM deciding ATM, explain why your decider is correct, and as a result conclude that your
assumption that FANTTM is decidable must have been false. It’s also fine if you want to give
a reduction from a different undecidable language, instead, but your proof should still have
this structure.

(c) Is FANTTM Turing-recognizable? Is FANTTM Turing-recognizable? Give a convincing expla-
nation for both of your answers, but a complete description of a TM or of a reduction is not
necessary.

1Happy Tolkein Reading Day on March 25th!
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5. (Subset detection) Consider the following computational problem: Given the (encodings of) two
basic TMs M and N , determine whether the language recognized by M is a subset of the language
recognized by N .

(a) Formulate this problem as a language SUBSETTM.

(b) Prove that the language SUBSETTM is undecidable.

6. (Bonus problem) Define the language XORTM = {⟨M,w, v⟩ | M is a TM that accepts exactly
one of the strings w, v}. Prove that both XORTM and its complement XORTM are both unrecog-
nizable.
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