
CS 332: Theory of Computation Prof. Mark Bun
Boston University April 11, 2024

Homework 9 – Due Thursday, April 18 at 11:59 PM

Reminder Collaboration is permitted, but you must write the solutions by yourself without assis-
tance, and be ready to explain them orally to the course staff if asked. You must also identify your
collaborators and write “Collaborators: none” if you worked by yourself. Getting solutions from out-
side sources such as the Web or students not enrolled in the class is strictly forbidden. Collaboration
is not allowed on problems marked “INDIVIDUAL.”

Note You may use various generalizations of the Turing machine model we have seen in class, such as
TMs with two-way infinite tapes, stay-put, or multiple tapes. If you choose to use such a generalization,
state clearly and precisely what model you are using. You may describe Turing machines at a
high-level on this assignment.

Problems There are 4 required problems and 1 bonus problem.

1. (Time and Space Warmup) Let A = {x#mxR | x ∈ {0, 1}m for some m ≥ 0}. Show that
A ∈ TIME(n2) and A ∈ SPACE(n) by i) giving an implementation-level description of a basic,
single-tape Turing machine M that decides A, ii) briefly explain why your TM correctly decides A,
and iii) analyzing the running time and space usage of M .

2. (Hierarchy Theorems) You may assume without saying so that any reasonable-looking function
(logarithms, polynomials, exponentials, and combinations thereof) is time-constructible.

The time complexity class P =
⋃∞

k=1 TIME(nk) consists of all languages decidable in polynomial

time. The time complexity class EXP =
⋃∞

k=1 TIME(2n
k
) consists of all languages decidable in

exponential time (i.e., in time that is an exponential of a polynomial).

(a) Show that P ⊆ TIME(nlogn).

(b) Use the time hierarchy theorem to show that EXP ̸⊆ TIME(nlogn).

(c) Combine parts (a) and (b) to conclude that P ̸= EXP.

3. (Encodings and Runtime) The runtime of an algorithm (Turing machine) is always measured as
a function if its input length. The goal of this problem is to help you understand what that means
and why it can be subtle.

(a) Prove that there is no polynomial-time algorithm that takes as input a natural number k
(written in binary) and outputs (i.e., writes to its tape) the number k! (again, written in
binary).

Hint: Show that the expected output for this problem is so long that it is impossible for a
poly-time algorithm to even write it down.

(b) Give a high-level description of a polynomial-time algorithm that takes as input a natural
number k (written in unary, i.e., the string 11 . . . 11︸ ︷︷ ︸

k times

) and outputs the number k! (written in

binary). Explain why your algorithm is correct and why it runs in polynomial time.

Hint: You can use without proof the fact that Turing machines can perform basic arithmetic
operations on binary numbers, like addition and multiplication, in polynomial time.

1



4. (Closure Properties)

(a) Show that P is closed under the union operation, i.e., show that for all languages L1, L2 ∈ P,
we have L1 ∪ L2 ∈ P.

(b) This question will walk you through a proof that P is closed under the star operation. Let L be
a language in P, and let M be a TM deciding L in time O(nc) for some constant c. Consider
the following algorithm S1 that decides L∗. Explain why S1 does not run in polynomial time.

Algorithm: S1(w)

Input : String w = w1w2 . . . wn of length n
1. For each k ≤ n and each way to break w into a concatentation of strings s1 ◦ s2 ◦ · · · ◦ sk:
2. For each i = 1, . . . , k:

3. Run M on input si.

4. If all runs have accepted, accept.

5. Reject.

(c) The following recursive algorithm uses a slightly different idea. Its correctness relies on the
fact that a string w1w2 . . . wn ∈ L∗ if and only if there exists an index i ∈ {0, . . . , n− 1} such
that w1w2 . . . wi ∈ L∗ and wi+1 . . . wn ∈ L. Explain why S2 does not run in polynomial time.

Algorithm: S2(w)

Input : String w = w1w2 . . . wn of length n
1. If n = 0: Accept.

2. For each i = 0, 1, 2, . . . , n− 1:

3. (Recursively) run S2 on input w1w2 . . . wi and run M on input wi+1 . . . wn.

4. If both runs accept, accept.

5. Reject.

(d) The main issue with the recursive algorithm in part (c) is that it for each prefix w1w2 . . . wi of
w, it keeps repeating the work of checking whether that prefix is in L∗. Wouldn’t it be great
if for each i, you only had to check whether w1w2 . . . wi is in L∗ once?

It turns out you can, and this forms the basis of an actual polynomial time algorithm. Think
of filling out an array T [0, 1, . . . , n] where each cell T [i] contains the answer to the question,
“is w1w2 . . . wi ∈ L∗?” Design an algorithm S3 that systematically fills in this array and uses
it to determine whether w ∈ L∗. Briefly explain why your algorithm runs in polynomial time,
and how it allows you to conclude that P is closed under the star operation.

5. (Bonus problem) Show that your algorithm from problem 1(a) is optimal: There is no basic,
single-tape TM algorithm deciding the language A = {x#mxR | x ∈ {0, 1}m for some m ≥ 0} in
time o(n2).

2


