
1/24/2024 CS332 - Theory of Computation 1

BU CS 332 – Theory of Computation

Lecture 2:

• Parts of a Theory of
Computation

• Sets, Strings, and Languages

Reading:

Sipser Ch 0

Mark Bun

January 24, 2024

Link to polls:
https://forms.gle/XkxqNuX8EGJenf7h7

Reminders:
• HW0 due + HW1

out tomorrow night
(Thu, 11:59PM)

https://forms.gle/XkxqNuX8EGJenf7h7

What makes a good theory?

• General ideas that apply to many different systems

• Expressed simply, abstractly, and precisely

Parts of a Theory of Computation

• Models for machines (computational devices)

• Models for the problems machines can be used to solve

• Theorems about what kinds of machines can solve what
kinds of problems, and at what cost

1/24/2024 CS332 - Theory of Computation 2

What is a (Computational) Problem?

For us: A problem will be the task of determining whether
a string is in a language

E.g. Parity: Given a string of a’s and b’s, does it contain
an even number of a’s?

1/24/2024 CS332 - Theory of Computation 3

What is a (Computational) Problem?

For us: A problem will be the task of determining whether
a string is in a language

• Alphabet: A finite set Ʃ Ex. Ʃ = {a, b}

• String: A finite concatenation of alphabet symbols
Ex. bba, ababb

 𝜀 denotes empty string, length 0

 Σ∗ = set of all strings using symbols from Ʃ

 Ex. a, b ∗ = {𝜀, a, b, aa, ab, ba, bb, … }

• Language: A set 𝐿 ⊆ Σ∗ of strings

1/24/2024 CS332 - Theory of Computation 4

Examples of Languages
Parity: Given a string consisting of a’s and b’s, does
 it contain an even number of a’s?

Ʃ = {a, b} 𝐿 = 𝑥 ∈ {a, b ∗ ∣ 𝑥 has an even # of a’s}

Primality: Given a natural number 𝑥 (represented in
 binary), is 𝑥 prime?

Ʃ = {0, 1} 𝐿 = 𝑥 ∈ {0, 1 ∗ ∣ 𝑥 is the binary rep. of a prime}

Halting Problem: Given a C program, can it ever get
 stuck in an infinite loop?

Ʃ = Extended ASCII 𝐿 = {𝑃 ∈ Σ∗ ∣ 𝑃 describes a C program

 that loops forever on some input}

1/24/2024 CS332 - Theory of Computation 5

Machine Models

Computation is the processing of information by the
unlimited application of a finite set of operations or rules

1/24/2024 CS332 - Theory of Computation 6

Input a b a a

Finite
control

…

Abstraction: We don’t care how the control is implemented. We just
require it to have a finite number of states, and to transition between
states using fixed rules.

Machine Models

• Finite Automata (FAs): Machine with a finite amount of
unstructured memory

1/24/2024 CS332 - Theory of Computation 7

Input a b a a

Finite
control

…

Control scans left-to-right
Can check simple patterns
Can’t perform unlimited counting

Useful for modeling chips, simple control systems, choose-your-
own adventure games…

Machine Models

• Turing Machines (TMs): Machine with unbounded,
unstructured memory

1/24/2024 CS332 - Theory of Computation 8

Input a b a a

Finite
control

…

Control can scan in both directions
Control can both read and write

Model for general sequential computation
Church-Turing Thesis: Everything we intuitively think of as
“computable” is computable by a Turing Machine

What theorems would we like to prove?

We will define classes of languages based on which
machines can solve the associated computational problems

Inclusion: Every language recognizable by a FA is also
recognizable by a TM

Non-inclusion: There exist languages recognizable by TMs
which are not recognizable by FAs

Completeness: Identify a “hardest” language in a class

Robustness: Alternative definitions of the same class

 Ex. Languages recognizable by FAs = regular expressions

1/24/2024 CS332 - Theory of Computation 9

Why study theory of computation?

• You’ll learn how to formally reason about computation

• You’ll learn the technology-independent foundations

 of CS

Philosophically interesting questions:
• Are there well-defined problems which cannot be solved by

computers?

• Can we always find the solution to a puzzle faster than trying
all possibilities?

• Can we say what it means for one problem to be “harder” or
“no harder” than another?

1/24/2024 CS332 - Theory of Computation 10

Why study theory of computation?

• You’ll learn how to formally reason about computation

• You’ll learn the technology-independent foundations

 of CS

Connections to other parts of science:
• Finite automata arise in compilers, AI, coding, chemistry

https://cstheory.stackexchange.com/a/14818

• Hard problems are essential to cryptography

• Computation occurs in cells/DNA, the brain, economic
systems, physical systems, social networks, etc.

1/24/2024 CS332 - Theory of Computation 11

https://cstheory.stackexchange.com/a/14818

What appeals to you about the theory of
computation?

1/24/2024 CS332 - Theory of Computation 12

Why study theory of computation?

Practical knowledge for developers

1/24/2024 CS332 - Theory of Computation 13

“Boss, I can’t find an efficient algorithm.
I guess I’m just too dumb.”

“Boss, I can’t find an efficient algorithm
because no such algorithm exists.”

Will you be asked about this material on job interviews?

 No promises, but a true story…

More about strings and
languages

1/24/2024 CS332 - Theory of Computation 14

String Theory

• Symbol: Ex. a, b, 0, 1

• Alphabet: A finite set Ʃ of symbols Ex. Ʃ = {a, b}

• String: A finite concatenation of alphabet symbols
Ex. bba, ababb

 𝜀 denotes empty string, length 0

 Σ∗ = set of all strings using symbols from Ʃ

 Ex. a, b ∗ = {𝜀, a, b, aa, ab, ba, bb, … }

• Language: A set 𝐿 ⊆ Σ∗ of strings

1/24/2024 CS332 - Theory of Computation 15

• Length of a string, written |𝑥|, is the number of symbols

Ex. abba = 𝜀 =

• Concatenation of strings 𝑥 and 𝑦, written 𝑥𝑦, is the
symbols from 𝑥 followed by the symbols from 𝑦

Ex. 𝑥 = ab, 𝑦 = ba ⇒ 𝑥𝑦 =

 𝑥 = ab, 𝑦 = 𝜀 ⇒ 𝑥𝑦 =

• Reversal of string 𝑥, written 𝑥𝑅 , consists of the symbols
of 𝑥 written backwards

Ex. 𝑥 = aab ⇒ 𝑥𝑅 =

1/24/2024 CS332 - Theory of Computation 16

String Theory

Fun with String Operations

What is 𝑥𝑦 𝑅?

Ex. 𝑥 = aba, 𝑦 = bba ⇒ 𝑥𝑦 =

 ⇒ 𝑥𝑦 𝑅 =

a) 𝑥𝑅𝑦𝑅

b) 𝑦𝑅𝑥𝑅

c) 𝑦𝑥 𝑅

d) 𝑥𝑦𝑅

1/24/2024 CS332 - Theory of Computation 17

Fun with String Operations

Claim: 𝑥𝑦 𝑅 =

Proof: Let 𝑥 = 𝑥1𝑥2 … 𝑥𝑛 and 𝑦 = 𝑦1𝑦2 … 𝑦𝑚

 Then 𝑥𝑦 𝑅 =

Not even the most formal way to do this:

1. Define string length recursively

2. Prove by induction on |𝑦|

1/24/2024 CS332 - Theory of Computation 18

Languages

A language 𝐿 is a set of strings over an alphabet Σ

 i.e., 𝐿 ⊆ Σ∗

Languages = computational (decision) problems

Input: String 𝑥 ∈ Σ∗

Output: Is 𝑥 ∈ 𝐿? (Yes or No?)

1/24/2024 CS332 - Theory of Computation 19

Some Simple Languages

1/24/2024 CS332 - Theory of Computation 20

∅ (Empty set)

Σ∗ (All strings)

Σ𝑛 = {𝑥 ∈ Σ∗ | 𝑥 = 𝑛}
 (All strings of length 𝑛)

Σ = {0, 1} Σ = {a, b, c}

Some More Interesting Languages

• 𝐿1 = The set of strings 𝑥 ∈ a, b ∗ that have an equal
number of a’s and b’s

• 𝐿2 = The set of strings 𝑥 ∈ a, b ∗ that start with (0 or
more) a’s and are followed by an equal number of b’s

• 𝐿3 = The set of strings 𝑥 ∈ 0, 1 ∗ that contain the
substring “0100"

1/24/2024 CS332 - Theory of Computation 21

Some More Interesting Languages

• 𝐿4 = The set of strings 𝑥 ∈ a, b ∗ of length at most 4

• 𝐿5 = The set of strings 𝑥 ∈ a, b ∗ that contain at least
two a’s

1/24/2024 CS332 - Theory of Computation 22

New Languages from Old

𝐿6 = The set of strings 𝑥 ∈ a, b ∗ that have an equal
number of a’s and b’s and length greater than 4

Since languages are just sets of strings, can build them
using set operations:

 𝐴 ∪ 𝐵 “union”

 𝐴 ∩ 𝐵 “intersection”

 ҧ𝐴 “complement”

1/24/2024 CS332 - Theory of Computation 23

New Languages from Old

𝐿6 = The set of strings 𝑥 ∈ a, b ∗ that have an equal
number of a’s and b’s and have length greater than 4

• 𝐿1 = The set of strings 𝑥 ∈ a, b ∗ that have an equal
number of a’s and b’s

• 𝐿4 = The set of strings 𝑥 ∈ a, b ∗ of length at most 4

 ⇒ 𝐿6 =

1/24/2024 CS332 - Theory of Computation 24

Operations Specific to Languages

• Reverse: 𝐿𝑅 = {𝑥𝑅 𝑥 ∈ 𝐿

 Ex. 𝐿 = {𝜀, a, ab, aab} ⇒ 𝐿𝑅 =

• Concatenation: 𝐿1 ∘ 𝐿2 = 𝑥𝑦 𝑥 ∈ 𝐿1, 𝑦 ∈ 𝐿2}

 Ex. 𝐿1 = {ab, aab} 𝐿2 = {𝜀, b, bb}

 ⇒ 𝐿1 ∘ 𝐿2 =

1/24/2024 CS332 - Theory of Computation 25

A Few “Traps”

String, language, or something else?

 𝜀

 ∅

 {𝜀}

 {∅}

1/24/2024 CS332 - Theory of Computation 26

Languages
Languages = computational (decision) problems

Input: String 𝑥 ∈ Σ∗

Output: Is 𝑥 ∈ 𝐿? (Yes or No? I.e., Accept or Reject?)

The language recognized by a program is the set of strings
𝑥 ∈ Σ∗ that it accepts

1/24/2024 CS332 - Theory of Computation 27

What Language Does This Program Recognize?

Alphabet Σ = a, b

On input 𝑥 = 𝑥1𝑥2 … 𝑥𝑛:

count = 0

 For 𝑖 = 1, … , 𝑛:

 If 𝑥𝑖 = a:

 count = count + 1

 If count ≤ 4: accept

 Else: reject

1/24/2024 CS332 - Theory of Computation 28

a) {𝑥 ∈ Σ∗ | 𝑥 > 4}
b) {𝑥 ∈ Σ∗ 𝑥 ≤ 4
c) {𝑥 ∈ Σ∗ | 𝑥 = 4}
d) {𝑥 ∈ Σ∗ | 𝑥 has more than 4 a′s}
e) {𝑥 ∈ Σ∗ 𝑥 has at most 4 a′s
f) {𝑥 ∈ Σ∗ | 𝑥 has exactly 4 a′s}

	Slide 1
	Slide 2: What makes a good theory?
	Slide 3: What is a (Computational) Problem?
	Slide 4: What is a (Computational) Problem?
	Slide 5: Examples of Languages
	Slide 6: Machine Models
	Slide 7: Machine Models
	Slide 8: Machine Models
	Slide 9: What theorems would we like to prove?
	Slide 10: Why study theory of computation?
	Slide 11: Why study theory of computation?
	Slide 12: What appeals to you about the theory of computation?
	Slide 13: Why study theory of computation?
	Slide 14: More about strings and languages
	Slide 15: String Theory
	Slide 16
	Slide 17: Fun with String Operations
	Slide 18: Fun with String Operations
	Slide 19: Languages
	Slide 20: Some Simple Languages
	Slide 21: Some More Interesting Languages
	Slide 22: Some More Interesting Languages
	Slide 23: New Languages from Old
	Slide 24: New Languages from Old
	Slide 25: Operations Specific to Languages
	Slide 26: A Few “Traps”
	Slide 27: Languages
	Slide 28: What Language Does This Program Recognize?

