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Last Time

• Parts of a theory of computation: Model for machines, 
model for problems, theorems relating machines and 
problems

• Strings: Finite concatenations of symbols

• Languages: Sets 𝐿 of strings

• Computational (decision) problem: Given a string 𝑥, is it 
in the language 𝐿?
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Deterministic Finite 
Automata
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A (Real-Life?) Example

• Example: Kitchen scale

• 𝑃 = Power button (ON / OFF)

• 𝑈 = Units button (cycles through g / oz / lb)
Only works when scale is ON, but units remembered when scale 
is OFF

• Starts OFF in g mode

• A computational problem: Does a sequence of button 
presses in {𝑃, 𝑈}∗ leave the scale ON in oz mode?
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Machine Models

• Finite Automata (FAs): Machine with a finite amount of 
unstructured memory
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Input 𝑃 𝑈 𝑃 𝑈

Finite 
control

…

Control scans left-to-right

1) What are the different “states” that the 
control can be in?

2) In what state does the control start?
3) When the control reads an new input 

character, how does it transition to a new 
state?

4) How do I know if I’m in the desired state at 
the end?



A DFA for the Kitchen Scale Problem
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𝑃 = Power button (ON / OFF)    𝑈 = Units button (cycles through g / oz / lb)
Starts OFF in g mode
Problem: Does a sequence of button presses leave the scale ON in oz mode?



A DFA Recognizing Parity
The language recognized by a DFA is the set of inputs on 
which it ends in an “accept” state

Parity: Given a string consisting of 𝑎’s and 𝑏’s, does 
it contain an even number of 𝑎’s?

Ʃ = {𝑎, 𝑏} 𝐿 = {𝑤 | 𝑤 contains an even number of 𝑎’s}
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Which state is reached by the 
parity DFA on input aabab?
a) “even”
b) “odd”



Anatomy of a DFA
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Some Tips for Thinking about DFAs

Given a DFA, what language does it recognize?

- Try experimenting with it on short strings. Do you notice 
any patterns?

- What kinds of inputs cause the DFA to get trapped in a 
state?

Given a language, construct a DFA recognizing it

- Imagine you are a machine, reading one symbol at a 
time, always prepared with an answer

- What is the essential information that you need to 
remember? Determines set of states.
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What language does this DFA recognize?
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1 0

1

0 0 1

0,1

𝑞0 𝑞1 𝑞2 𝑞3



Practice!
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• Lots of worked out examples in Sipser

• Automata Tutor: https://automata-
tutor.model.in.tum.de/

https://automata-tutor.model.in.tum.de/
https://automata-tutor.model.in.tum.de/


Formal Definition of a DFA
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𝑄 is the set of states

Σ is the alphabet

𝛿:  𝑄 ×  Σ →  𝑄 is the transition function

𝑞0  𝑄 is the start state

𝐹 ⊆  𝑄 is the set of accept states

A finite automaton is a 5-tuple 𝑀 =  (𝑄, Σ, 𝛿, 𝑞0, 𝐹) 



A DFA for Parity

Parity: Given a string consisting of 𝑎’s and 𝑏’s, does 
it contain an even number of 𝑎’s?

Ʃ = {𝑎, 𝑏} 𝐿 = {𝑤 | 𝑤 contains an even number of 𝑎’s}
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𝑞0 𝑞1

𝑏 𝑏

𝑎

𝑎

State set 𝑄 =
Alphabet Ʃ =
Transition function 𝛿

Start state 𝑞0 
Set of accept states 𝐹 =

𝛿 𝑎 𝑏

𝑞0

𝑞1



Formal Definition of DFA Computation
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𝐿(𝑀) = the language of machine 𝑀
      = set of all strings machine 𝑀 accepts
𝑀 recognizes the language 𝐿(𝑀)

A DFA 𝑀 =  (𝑄, Σ, 𝛿, 𝑞0, 𝐹) accepts a string 
𝑤 = 𝑤1𝑤2 · · · 𝑤𝑛 ∈  Σ∗ (where each 𝑤𝑖  ∈  Σ) if there exist 
𝑟0, . . . , 𝑟𝑛  ∈  𝑄 such that 

1.  𝑟0  = 𝑞0

2.  𝛿(𝑟𝑖 , 𝑤𝑖+1)  = 𝑟𝑖+1 for each 𝑖 =  0, . . . , 𝑛 − 1, and

3.   𝑟𝑛 ∈  𝐹



Example: Computing with the Parity DFA
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𝑞0 𝑞1

𝑏 𝑏

𝑎

𝑎

A DFA 𝑀 =  (𝑄, Σ, , 𝑞0, 𝐹) accepts a string 
𝑤 = 𝑤1𝑤2 · · · 𝑤𝑛 ∈  Σ∗ (where each 𝑤𝑖  ∈  Σ) if there exist 
𝑟0, . . . , 𝑟𝑛  ∈  𝑄 such that 

1.  𝑟0  = 𝑞0

2.  𝛿(𝑟𝑖 , 𝑤𝑖+1)  = 𝑟𝑖+1 
 for each 𝑖 =  0, . . . , 𝑛 − 1
3.   𝑟𝑛 ∈  𝐹

Let 𝑤 =  𝑎𝑏𝑏𝑎
Does 𝑀 accept 𝑤?

What is 𝛿 𝑟2, 𝑤3 ?
a)  𝑞0

b)  𝑞1



Regular Languages
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Definition: A language is regular if it is recognized by a DFA

𝐿 = { 𝑤 ∈ 0,1 ∗| 𝑤 contains 001 } is regular

𝐿 = { 𝑤 ∈ 𝑎, 𝑏 ∗ | 𝑤 has an even number of 𝑎’s } is regular

Many interesting problems are captured by regular 
languages

Network Protocols

Compilers

Genetic Testing

Arithmetic



Internet Transmission Control Protocol

1/29/2024 CS332 - Theory of Computation 17

Let TCPS = { 𝑤 | 𝑤 is a complete TCP Session}
Theorem: TCPS is regular



Compilers

1/29/2024 CS332 - Theory of Computation 18

Comments :

 Are delimited by /* */

 Cannot have nested /* */

 Must be closed by */

 */ is illegal outside a comment

COMMENTS = {strings over {0,1, /, *} with legal comments}

Theorem: COMMENTS is regular



Genetic Testing

1/29/2024 CS332 - Theory of Computation 19

DNA sequences are strings over the alphabet {A, C, G, T}.

A gene 𝑔  is a special substring over this alphabet.

A genetic test searches a  DNA sequence for a gene.

GENETICTEST𝑔 = {strings over {A, C, G, T} containing 𝑔 as a substring}

Theorem: GENETICTEST𝑔 is regular for every gene 𝑔.



Arithmetic
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LET  = 

• A string over  has three ROWS  (ROW1, ROW2, ROW3)

• Each ROW 𝑏0𝑏1𝑏2 … 𝑏𝑁 represents the integer 

                                                   𝑏0 +  2𝑏1 +  … +  2𝑁𝑏𝑁.

• Let ADD = {𝑆 ∈ Σ∗| ROW1 + ROW2 = ROW3 } 

Theorem. ADD is regular.

{ [ ],[ ],[ ],[ ],
  [ ],[ ],[ ],[ ]}

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1



Nondeterministic Finite 
Automata
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Nondeterminism
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In a DFA, the machine is always in exactly one state upon 
reading each input symbol

In a nondeterministic FA, the machine can “try out” 
many different ways of reading the same string
- Next symbol may cause an NFA to “branch” into 

multiple possible computations
- Next symbol may cause NFA’s computation to fail to 

enter any state at all



Nondeterminism
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1 0

1

0 1

0,1

0

A Nondeterministic Finite Automaton (NFA) accepts if 

there exists a way to make it reach an accept state.

𝒒𝟎𝒒𝟏𝒒𝟐𝒒𝟑



Nondeterminism
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Example: Does this NFA accept the string 1100?

1 0

1

0 1

0,1

0
𝒒𝟎𝒒𝟏𝒒𝟐𝒒𝟑



Nondeterminism
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Example: Does this NFA accept the string 11?

1 0

1

0 1

0,1

0
𝒒𝟎𝒒𝟏𝒒𝟐𝒒𝟑



Some special transitions
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0

0, 1

𝜺

1



Example
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1

0

0

𝑳(𝑴) =

𝜺

𝜺

0,1



Example
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0,1

10, 𝜺

𝑳(𝑵) = a) 𝑤 𝑤 ends with 101}
b) 𝑤 𝑤 ends with 11 or 101}
c) 𝑤 𝑤 contains 101}
d) 𝑤 𝑤 contains 11 or 101}

0,1

1
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