
BU CS 332 – Theory of Computation

Lecture 3:

• Deterministic Finite
Automata

• Non-deterministic FAs

Reading:

Sipser Ch 1.1-1.2

Mark Bun

January 29, 2024

https://forms.gle/9kKZfSjHrVJdbThH6

https://forms.gle/9kKZfSjHrVJdbThH6

Last Time

• Parts of a theory of computation: Model for machines,
model for problems, theorems relating machines and
problems

• Strings: Finite concatenations of symbols

• Languages: Sets 𝐿 of strings

• Computational (decision) problem: Given a string 𝑥, is it
in the language 𝐿?

1/29/2024 CS332 - Theory of Computation 2

Deterministic Finite
Automata

1/29/2024 CS332 - Theory of Computation 3

A (Real-Life?) Example

• Example: Kitchen scale

• 𝑃 = Power button (ON / OFF)

• 𝑈 = Units button (cycles through g / oz / lb)
Only works when scale is ON, but units remembered when scale
is OFF

• Starts OFF in g mode

• A computational problem: Does a sequence of button
presses in {𝑃, 𝑈}∗ leave the scale ON in oz mode?

1/29/2024 CS332 - Theory of Computation 4

Machine Models

• Finite Automata (FAs): Machine with a finite amount of
unstructured memory

1/29/2024 CS332 - Theory of Computation 5

Input 𝑃 𝑈 𝑃 𝑈

Finite
control

…

Control scans left-to-right

1) What are the different “states” that the
control can be in?

2) In what state does the control start?
3) When the control reads an new input

character, how does it transition to a new
state?

4) How do I know if I’m in the desired state at
the end?

A DFA for the Kitchen Scale Problem

1/29/2024 CS332 - Theory of Computation 6

𝑃 = Power button (ON / OFF) 𝑈 = Units button (cycles through g / oz / lb)
Starts OFF in g mode
Problem: Does a sequence of button presses leave the scale ON in oz mode?

A DFA Recognizing Parity
The language recognized by a DFA is the set of inputs on
which it ends in an “accept” state

Parity: Given a string consisting of 𝑎’s and 𝑏’s, does
it contain an even number of 𝑎’s?

Ʃ = {𝑎, 𝑏} 𝐿 = {𝑤 | 𝑤 contains an even number of 𝑎’s}

1/29/2024 CS332 - Theory of Computation 7

Which state is reached by the
parity DFA on input aabab?
a) “even”
b) “odd”

Anatomy of a DFA

1/29/2024 CS332 - Theory of Computation 8

𝒒𝟐

0

0,1

0
0

1

1

1

𝒒𝟎

𝒒𝟏

𝒒𝟑

Some Tips for Thinking about DFAs

Given a DFA, what language does it recognize?

- Try experimenting with it on short strings. Do you notice
any patterns?

- What kinds of inputs cause the DFA to get trapped in a
state?

Given a language, construct a DFA recognizing it

- Imagine you are a machine, reading one symbol at a
time, always prepared with an answer

- What is the essential information that you need to
remember? Determines set of states.

1/29/2024 CS332 - Theory of Computation 9

What language does this DFA recognize?

1/29/2024 CS332 - Theory of Computation 10

1 0

1

0 0 1

0,1

𝑞0 𝑞1 𝑞2 𝑞3

Practice!

1/29/2024 CS332 - Theory of Computation 11

• Lots of worked out examples in Sipser

• Automata Tutor: https://automata-
tutor.model.in.tum.de/

https://automata-tutor.model.in.tum.de/
https://automata-tutor.model.in.tum.de/

Formal Definition of a DFA

1/29/2024 CS332 - Theory of Computation 12

𝑄 is the set of states

Σ is the alphabet

𝛿: 𝑄 × Σ → 𝑄 is the transition function

𝑞0 𝑄 is the start state

𝐹 ⊆ 𝑄 is the set of accept states

A finite automaton is a 5-tuple 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)

A DFA for Parity

Parity: Given a string consisting of 𝑎’s and 𝑏’s, does
it contain an even number of 𝑎’s?

Ʃ = {𝑎, 𝑏} 𝐿 = {𝑤 | 𝑤 contains an even number of 𝑎’s}

1/29/2024 CS332 - Theory of Computation 13

𝑞0 𝑞1

𝑏 𝑏

𝑎

𝑎

State set 𝑄 =
Alphabet Ʃ =
Transition function 𝛿

Start state 𝑞0
Set of accept states 𝐹 =

𝛿 𝑎 𝑏

𝑞0

𝑞1

Formal Definition of DFA Computation

1/29/2024 CS332 - Theory of Computation 14

𝐿(𝑀) = the language of machine 𝑀
 = set of all strings machine 𝑀 accepts
𝑀 recognizes the language 𝐿(𝑀)

A DFA 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) accepts a string
𝑤 = 𝑤1𝑤2 · · · 𝑤𝑛 ∈ Σ∗ (where each 𝑤𝑖 ∈ Σ) if there exist
𝑟0, . . . , 𝑟𝑛 ∈ 𝑄 such that

1. 𝑟0 = 𝑞0

2. 𝛿(𝑟𝑖 , 𝑤𝑖+1) = 𝑟𝑖+1 for each 𝑖 = 0, . . . , 𝑛 − 1, and

3. 𝑟𝑛 ∈ 𝐹

Example: Computing with the Parity DFA

1/29/2024 CS332 - Theory of Computation 15

𝑞0 𝑞1

𝑏 𝑏

𝑎

𝑎

A DFA 𝑀 = (𝑄, Σ, , 𝑞0, 𝐹) accepts a string
𝑤 = 𝑤1𝑤2 · · · 𝑤𝑛 ∈ Σ∗ (where each 𝑤𝑖 ∈ Σ) if there exist
𝑟0, . . . , 𝑟𝑛 ∈ 𝑄 such that

1. 𝑟0 = 𝑞0

2. 𝛿(𝑟𝑖 , 𝑤𝑖+1) = 𝑟𝑖+1
 for each 𝑖 = 0, . . . , 𝑛 − 1
3. 𝑟𝑛 ∈ 𝐹

Let 𝑤 = 𝑎𝑏𝑏𝑎
Does 𝑀 accept 𝑤?

What is 𝛿 𝑟2, 𝑤3 ?
a) 𝑞0

b) 𝑞1

Regular Languages

1/29/2024 CS332 - Theory of Computation 16

Definition: A language is regular if it is recognized by a DFA

𝐿 = { 𝑤 ∈ 0,1 ∗| 𝑤 contains 001 } is regular

𝐿 = { 𝑤 ∈ 𝑎, 𝑏 ∗ | 𝑤 has an even number of 𝑎’s } is regular

Many interesting problems are captured by regular
languages

Network Protocols

Compilers

Genetic Testing

Arithmetic

Internet Transmission Control Protocol

1/29/2024 CS332 - Theory of Computation 17

Let TCPS = { 𝑤 | 𝑤 is a complete TCP Session}
Theorem: TCPS is regular

Compilers

1/29/2024 CS332 - Theory of Computation 18

Comments :

 Are delimited by /* */

 Cannot have nested /* */

 Must be closed by */

 */ is illegal outside a comment

COMMENTS = {strings over {0,1, /, *} with legal comments}

Theorem: COMMENTS is regular

Genetic Testing

1/29/2024 CS332 - Theory of Computation 19

DNA sequences are strings over the alphabet {A, C, G, T}.

A gene 𝑔 is a special substring over this alphabet.

A genetic test searches a DNA sequence for a gene.

GENETICTEST𝑔 = {strings over {A, C, G, T} containing 𝑔 as a substring}

Theorem: GENETICTEST𝑔 is regular for every gene 𝑔.

Arithmetic

1/29/2024 CS332 - Theory of Computation 20

LET =

• A string over has three ROWS (ROW1, ROW2, ROW3)

• Each ROW 𝑏0𝑏1𝑏2 … 𝑏𝑁 represents the integer

 𝑏0 + 2𝑏1 + … + 2𝑁𝑏𝑁.

• Let ADD = {𝑆 ∈ Σ∗| ROW1 + ROW2 = ROW3 }

Theorem. ADD is regular.

{ [],[],[],[],
 [],[],[],[]}

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

Nondeterministic Finite
Automata

1/29/2024 CS332 - Theory of Computation 21

Nondeterminism

1/29/2024 CS332 - Theory of Computation 22

In a DFA, the machine is always in exactly one state upon
reading each input symbol

In a nondeterministic FA, the machine can “try out”
many different ways of reading the same string
- Next symbol may cause an NFA to “branch” into

multiple possible computations
- Next symbol may cause NFA’s computation to fail to

enter any state at all

Nondeterminism

1/29/2024 CS332 - Theory of Computation 23

1 0

1

0 1

0,1

0

A Nondeterministic Finite Automaton (NFA) accepts if

there exists a way to make it reach an accept state.

𝒒𝟎𝒒𝟏𝒒𝟐𝒒𝟑

Nondeterminism

1/29/2024 CS332 - Theory of Computation 24

Example: Does this NFA accept the string 1100?

1 0

1

0 1

0,1

0
𝒒𝟎𝒒𝟏𝒒𝟐𝒒𝟑

Nondeterminism

1/29/2024 CS332 - Theory of Computation 25

Example: Does this NFA accept the string 11?

1 0

1

0 1

0,1

0
𝒒𝟎𝒒𝟏𝒒𝟐𝒒𝟑

Some special transitions

1/29/2024 CS332 - Theory of Computation 26

0

0, 1

𝜺

1

Example

1/29/2024 CS332 - Theory of Computation 27

1

0

0

𝑳(𝑴) =

𝜺

𝜺

0,1

Example

1/29/2024 CS332 - Theory of Computation 28

0,1

10, 𝜺

𝑳(𝑵) = a) 𝑤 𝑤 ends with 101}
b) 𝑤 𝑤 ends with 11 or 101}
c) 𝑤 𝑤 contains 101}
d) 𝑤 𝑤 contains 11 or 101}

0,1

1

	Slide 1: BU CS 332 – Theory of Computation
	Slide 2: Last Time
	Slide 3: Deterministic Finite Automata
	Slide 4: A (Real-Life?) Example
	Slide 5: Machine Models
	Slide 6: A DFA for the Kitchen Scale Problem
	Slide 7: A DFA Recognizing Parity
	Slide 8: Anatomy of a DFA
	Slide 9: Some Tips for Thinking about DFAs
	Slide 10: What language does this DFA recognize?
	Slide 11: Practice!
	Slide 12: Formal Definition of a DFA
	Slide 13: A DFA for Parity
	Slide 14: Formal Definition of DFA Computation
	Slide 15: Example: Computing with the Parity DFA
	Slide 16: Regular Languages
	Slide 17: Internet Transmission Control Protocol
	Slide 18: Compilers
	Slide 19: Genetic Testing
	Slide 20: Arithmetic
	Slide 21: Nondeterministic Finite Automata
	Slide 22: Nondeterminism
	Slide 23: Nondeterminism
	Slide 24: Nondeterminism
	Slide 25: Nondeterminism
	Slide 26: Some special transitions
	Slide 27: Example
	Slide 28: Example

